Skip to main content
Log in

Photobleaching, Mobility, and Compartmentalisation: Inferences in Fluorescence Correlation Spectroscopy

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In living cells the transport and diffusion of molecules is constrained by compartments of various sizes. This paper is an attempt to show that the size of these compartments can in principle be estimated experimentally from Fluorescence Correlation Spectroscopy (FCS) combined with the measurement of the photobleaching rate. In this work, confocal fluorescence microscopy experiments have been carried out on giant unilamellar vesicles, a system that mimics cellular compartmentalisation. We have developed numerical and analytical models to describe the fluorescence decay due to photobleaching in this geometry, which has enabled us to point out two regimes depending on the value of the parameter p B = σ P/D (where σ B is the photobleaching cross section of the dye, D its diffusion constant, and P the laser power (in photon/s)). In particular, when p B ≪ 1 (i.e. in the fast diffusion regime), the photobleaching rate is independent of the diffusion constant and scales like σ B P/R 2, in agreement with the experimental results. On the other hand, the standard diffusion models used to analyse the FCS data do not take into account the effects of the fluorescence decay on the autocorrelation curve. We show here how to correct the raw data for these drawbacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. W. Webb (2001). Fluorescence correlation spectroscopy: Inception, biophysical experimentation and prospectus. Appl. Opt. 40, 3969-3983.

    Google Scholar 

  2. D. Madge, E. Elson, and W. W. Webb (1972). Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29, 705-708.

    Google Scholar 

  3. E. L. Elson (2001). Fluorescence correlation spectroscopy measures molecular transport in cells. Traffic 2, 789-796.

    Google Scholar 

  4. E. Haustein and P. Schwille (2003). Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy. Methods 29, 153-166.

    Google Scholar 

  5. S. T. Hess, S. Huang, A. A. Heikal, and W. W. Webb (2002). Biological and chemical applications of fluorescence correlation spectroscopy: A review Biochemistry 41, 697-705.

    Google Scholar 

  6. P. Schwille, U. Haupts, S. Maiti, and W. W. Webb (1999). Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one-and two-photon excitation. Biophys. J. 77, 2251-2265.

    Google Scholar 

  7. P. S. Dittrich and P. Schwille (2001). Photobleaching and stabilization of fluorophores used for single molecule analysis with one-and two-photon excitation. Appl. Phys. B 73, 829-837.

    Google Scholar 

  8. J. Widengren and R. Rigler (1996). Mechanisms of photobleaching investigated by fluorescence correlation spectroscopy. Bioimaging 4, 149-157.

    Google Scholar 

  9. G. H. Patterson and D. W. Piston (2000). Photobleaching in two-photon excitation microscopy Biophys J. 78, 2159-2162.

    Google Scholar 

  10. T. S. Chen, S. Q. Zeng, Q. M. Luo, Z. H. Zhang, and W. Zhou (2002). High-order photobleaching of green fluorescent protein inside live cells in two-photon excitation microscopy. Biochem. Biophys. Res. Commun. 291, 1272-1275.

    Google Scholar 

  11. K. Bacia and P. Schwille (2003). A dynamic view of cellular processes by in vivo fluorescence auto-and cross-correlation spectroscopy. Methods 29, 74-85.

    Google Scholar 

  12. K. Bacia, I. V. Majoul, and P. Schwille (2002). Title probing the endocytic pathway in live cells using dual-color fluorescence cross-correlation analysis. Biophys. J. 83, 1184-1193.

    Google Scholar 

  13. L. Song, E. J. Hennink, I. T. Young, and H. J. Tanke (1995). Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophys. J. 68, 2588-2600.

    Google Scholar 

  14. L. Song, C. A. G. O. Varma, J. W. Verhoeven, and H. J. Tanke (1996). Influence of the triplet excited state on the photobleaching kinetics of fluorescein in microscopy. Biophys. J. 70, 2959-2968.

    Google Scholar 

  15. L. Song, R. P. van Gijlswijk, I. T. Young, and H. J. Tanke (1997). Influence of fluorochrome labeling density on the photobleaching kinetics of fluorescein in microscopy. Cytometry 27, 213-223.

    Google Scholar 

  16. C. Eggeling, L. Brand, and C. A. M. Seidel (1997). Laser-induced fluorescence of coumarin derivatives in aqueous solutions: Photochemical aspects for single molecule detection. Bioimaging 5, 105-115.

    Google Scholar 

  17. C. Eggeling, J. Widengren, R. Rigler, and C. A. M. Seidel (1998). Photobleaching of fluorescence dyes under conditions used for single-molecule detection: Evidence of two-step photolysis. Anal. Chem. 70, 2651-2659.

    Google Scholar 

  18. C. Eggeling, J. Widengren, R. Rigler, and C. A. M. Seidel (1999). In W. Rettig (Ed.), Applied Fluorescence in Chemistry, Biology and Medicine, Springer-Verlag, Berlin, pp. 193-240.

    Google Scholar 

  19. R. Peters, A. Brüngers, and K. Schulten (1981). Continuous fluorescence microphotolysis: A sensitive method for study of diffusion processes in single cells Proc. Nat. Acad. Sci. U.S.A. 78, 962-966.

    Google Scholar 

  20. U. Kubitscheck, P. Wedekind, and R. Peters (1998). Three-dimensional diffusion measurements by scanning microphotolysis. J. Microsc. (USA) 192, 126-138.

    Google Scholar 

  21. M. Wachsmuth, T. Weidemann, G. Müller, U. W. Hoffmann-Rohrer, T. A. Knoch, W. Waldekc, and J. Langowski (2003). Analyzing intracellular binding and diffusion with continuous fluorescence photobleaching. Biophys. J. 84, 3353-3363.

    Google Scholar 

  22. G. Carrero, D. McDonald, E. Crawford, G. de Vries, and M. J. Hendzel (2003). Using FRAP and mathematical modeling to determine the in vivo kinetics of nuclear proteins. Methods 29, 14-28.

    Google Scholar 

  23. J. Lippincott-Schwartz, N. Altan-Bonnet, and G. H. Patterson (2003). Photobleaching and photoactivation: Following protein dynamics in living cells. Suppl. Nat. Cell Biol. 5, S7-S14.

    Google Scholar 

  24. M. I. Angelova, S. Soléau, P. Méléard, J. Faucon, and P. Bothorel (1992). Preparation of giant vesicles by external A. C. electric field Progr. Coll. Pol. Sci. 89, 127.

    Google Scholar 

  25. J. Enderlein (1996). Path integral approach to fluorescence correlation experiments. Phys. Lett. A 221, 427-433.

    Google Scholar 

  26. R. Courant and D. Hilbert (1989). Methods in Mathematical Physics, Wiley, New York, Vol. I, ch. V.

    Google Scholar 

  27. J. Mertz (1998). Molecular photodynamics involved in multi-photon excitation fluorescence microscopy. Eur. Phys. J. D 3, 53-66.

    Google Scholar 

  28. N. L. Thompson (1991). In J. R. Lakowicz (Ed.), Topics in Fluorescence Spectroscopy, Plenum Press, New York, pp. 337-378.

    Google Scholar 

  29. J. Widengren, U. Mets, and R. Rigler (1995). Fluorescence correlation spectroscopy of triplet states in solution: A theoretical and experimental study. J. Phys. Chem. 99, 13368-13379.

    Google Scholar 

  30. Y. Chen, J. D. Müller, Q. Ruan, and E. Gratton (2002). Molecular brightness characterisation of EGFP in vivo by fluorescence fluctuation spectroscopy Biophys. J. 82, 133-144.

    Google Scholar 

  31. D. M. Benson, J. Bryan, A. L. Plant, A. M. Gotto, Jr., and L. C. Smith (1985). Digital imaging fluorescence microscopy: Spatial heterogeneity of photobleaching rate constants in individual cells. J. Cell Biol. 100, 1309-1323

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Delon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delon, A., Usson, Y., Derouard, J. et al. Photobleaching, Mobility, and Compartmentalisation: Inferences in Fluorescence Correlation Spectroscopy. Journal of Fluorescence 14, 255–267 (2004). https://doi.org/10.1023/B:JOFL.0000024557.73246.f9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOFL.0000024557.73246.f9

Navigation