Skip to main content

The Effect of Pea Chloroplast Alignment and Variation of Excitation Wavelength on the Circularly Polarized Chlorophyll Luminescence

Abstract

Circularly polarized luminescence (CPL) is a powerful technique to study the macroorganization of photosynthetic light-harvesting apparatus in vivoand in vitro. It is particularly useful for monitoring environmental stress induced molecular re-organization of thylakoid membranes in green leaves. The current study focuses on two questions which are important to perform and interpret such experiments: how does CPL depend on the excitation wavelength and how on the orientation of the granal thylakoids. CPL and circular dichroism (CD) of pea chloroplasts were complementarily applied when chloroplasts were either in suspension or trapped in a polyacrylamide gel (PAAG) after alignment in a magnetic field. In contrast to the CD spectrum, the CPL signal was found to be independent of the excitation wavelength in both the Soret and the Q y absorption region for chloroplasts in both suspension and PAAG. The improved resolution of luminescence measurements revealed a relatively small negative CPL band in addition to the previously described large positive band. No effect of photoselection upon excitation on the CPL spectra was detected. The CPL intensity at 690 nm at the edge of the granal thylakoids was found to be higher than at the face of the grana suggesting the CPL anisotropy.

This is a preview of subscription content, access via your institution.

References

  1. G. Garab (1996). in R. C. Jennings, G. Zucchelli, F. Ghetti, and G. Colombetti (Eds.), Light as an Energy and Information Carrier in Plant Physiology, Plenum Press, New York, pp. 125-136.

    Google Scholar 

  2. V. Barzda, A. Istokovics, I. Simidjiev, and G. Garab (1996). Structural flexibility of chiral macroaggregates of light-harvesting chlorophyll a/b pigment–protein complexes. Light-induced reversible structural changes associated with energy dissipation. Biochemistry 35, 8981-8985.

    Google Scholar 

  3. A. Istokovics, I. Simidjiev, F. Lajko, and G. Garab (1997). Characterization of the light induced reversible changes in the chiral macroorganization of the chromophores in chloroplast thylakoid membranes. Temperature dependence and effect of inhibitors. Photosynth. Res. 54, 45-53.

    Google Scholar 

  4. E. E. Gussakovsky, V. Barzda, Y. Shahak, and G. Garab (1997). Irreversible disassembly of chiral macrodomains in thylakoids due to photoinhibition. Photosynth. Res. 51, 119-126.

    Google Scholar 

  5. G. Garab, A. Faludi-Dániel, J. C. Sutherland, and G. Hind (1988). Macroorganization of chlorophyll a/b light-harvesting complex in thylakoids and aggregates: Information from circular differential scattering. Biochemistry 27, 2425-2430.

    Google Scholar 

  6. L. Finzi, C. Bustamante, G. Garab, and C.-B. Juang (1989). Direct observation of large chiral domains in chloroplast thylakoid membranes by differential polarization microscopy. Proc. Natl. Acad. Sci. U.S.A. 86, 8748-8752.

    Google Scholar 

  7. V. Barzda, L. Mustardy, and G. Garab (1994). Size dependency of circular dichroism in macroaggregates of photosynthetic pigment–protein complexes. Biochemistry 33, 10837-10841.

    Google Scholar 

  8. I. Z. Steinberg (1978). Circular polarizatioin of luminescence: Biopchemical and biophysical applications. Annu. Rev. Biophys. Bioeng. 7, 113-137.

    Google Scholar 

  9. I. Z. Steinberg (1978). Circularly polarized luiminescence. Methods Enzymol. 49, 179-198.

    Google Scholar 

  10. J. P. Riehl and F. S. Richardson (1986). Circularly polarized luminescence spectroscopy. Chem. Rev. 86, 1-16.

    Google Scholar 

  11. J. P. Riehl and F. S. Richardson (1976). General theory of circularly polarized emission and magnetic circularly polarized emission from molecular systems. J. Chem. Phys. 65, 1011-1021.

    Google Scholar 

  12. E. E. Gussakovsky, B. A. Salakhutdinov, and Y. Shahak (2002). Chiral macroaggregates of LHCII detected by circularly polarized luminescence in intact pea leaves are sensitive to drought stress. Funct. Plant Biol. 29, 955-963.

    Google Scholar 

  13. E. E. Gussakovsky, V. Barzda, H. van Amerongen, R. van Grondelle, and Y. Shahak (1998). in G. Garab (Ed.), Photosynthesis: Mechanisms and Effects, Kluwer Academic, Dordrecht, The Netherlands, Vol. 1, pp. 317-320.

    Google Scholar 

  14. E. E. Gussakovsky, Y. Shahak, H. van Amerongen, and V. Barzda (2000). Circular polarized chlorophyll luminescence reflects the macroorganization of grana in pea chloroplasts. Photosynth. Res. 65, 83-92.

    Google Scholar 

  15. A. Gafni, H. Hartd, J. Schlessinger, and I. Z. Steinberg (1975). Circular polarization of fluorescence of chlorophyll in solution and in native struictures. Biochim. Biophys. Acta 387, 256-264.

    Google Scholar 

  16. J. C. Goedheer (1955). Chlorophyll spectra and molecular structure. Nature 176, 928-929.

    Google Scholar 

  17. D. L. Arnon (1949). Copper enzymes in isolated chloroplasts: Polyphenoloxydase in Beta bulgaris. Plant Physiol. 24, 1-15.

    Google Scholar 

  18. N. E. Geacintov, F. van Nostrand, J. B. Tinkel, and J. F. Becker (1972). Magnetic-field induced orientation of photosynthetic systems. Biochim. Biophys. Acta 267, 65-79.

    Google Scholar 

  19. Sz. Osváth, G. Meszéna, V. Barzda, and G. Garab (1994). Trapping magnetically oriented chloroplast thylakoid membranes in gel for electric measurements. J. Photochem. Photobiol. 26B, 287-292.

    Google Scholar 

  20. I. Z. Steinberg and A. Gafni (1972). Sensitive instrument for the study of circular polarization of luminescence. Rev. Sci. Instrum. 43, 409-413.

    Google Scholar 

  21. E. E. Gussakovsky and E. Haas (1995). Two steps in the transition between the native and acid states of bovine α-lactalbumin detected by circular polarization of luminescence: Evidence for a premolten globule state? Protein Sci. 4, 2319-2326.

    Google Scholar 

  22. C. K. Luk and F. S. Richardson (1974). Circularly polarized luminescence and energy transfer studies on carboxylic acid of Europium (III) and Terbium (III) in solution. J. Am. Chem. Soc. 97, 2006-2009.

    Google Scholar 

  23. J. A. Schauerte, B. D. Schlyer, D. G. Steel, and A. Gafni (1995). Nanosecond time-resolved circular polarization of fluorescence: Study of NADH bound to horse liver alcohol dehydrogenase. Proc. Natl. Acad. Sci. U.S.A. 92, 569-573.

    Google Scholar 

  24. J.-M. Briantais, C. Vernotte, G. H. Kraise, and E. Weis (1986). in Govinjee, J. Amesz, and D. C. Fork (Eds.), Light Emission by Plants and Bacteria, Academic Press, New York, pp. 539-583.

    Google Scholar 

  25. R. L. van Metter (1977). Excitation energy transfer in the light-harvesting chlorophyll a/b protein. Biochim. Biophys. Acta 462, 642-658.

    Google Scholar 

  26. J. P. Connelly, M. G. Muller, R. Bassi, R. Croce, and A. R. Holzwarth (1997). Femtosecond transient absorption study of carotenoid to chlorophyll energy transfer in the light-harvesting complex II of photosystem II. Biochemistry 36, 281-287.

    Google Scholar 

  27. F. J. Kleima, C. C. Gradinaru, F. Calkoen, I. H. M. van Stokkum, R. van Grondelle, and H. van Amerongen (1997). Energy transfer in LHCII monomers at 77K studied by sub-picosecond transient absorption spectroscopy. Biochemistry 36, 15262-15268.

    Google Scholar 

  28. V. Barzda, V. Gulbinas, R. Kananavicius, V. Cervinskas, H. van Amerongen, R. van Grondelle, and L. Valkunas (2001). Singlet-singlet annihilation kinetics in aggregates and trimers of LHCII. Biophys. J. 80, 2409-2421.

    Google Scholar 

  29. R. A. Olson, W. H. Jennings, and W. L. Butler (1964). Molecular orientation: Spectral dependence of bifluorescnece of chloroplasts in vivo. Biochim. Biophys. Acta 88, 331-337.

    Google Scholar 

  30. J. Breton, M. Michel-Villaz, and G. Paillotin (1973). Orientation of pigments and structural proteins in the photosynthetic membrane of spinach chloroplasts: A linear dichroism study. Biochim. Biophys. Acta 314, 42-56.

    Google Scholar 

  31. G. Garab, J. G. Kiss, L. A. Mustárdy, and M. Michel-Villaz (1981). Orientation of emitting dipoles of chlorophyll a in thylakoids. Considerations of the orientation factors. Biophys. J. 34, 423-437.

    Google Scholar 

  32. H. van Amerongen, S. L. S. Kwa, B. M. van Bolhuis, and R. van Grondelle (1994). Polarized fluorescence and absorption of macroscopically aligned light harvesting complex II. Biophys. J. 67, 837-847.

    Google Scholar 

  33. G. Garab, L. Finzi, and C. Bustamante (1991). in R. H. Douglas, J. Moan, and G. Ronto (Eds.), Light in Biology and Medicine, Plenum Press, New York, Vol. 2, pp. 77-88.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene E. Gussakovsky.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barzda, V., Ionov, M., van Amerongen, H. et al. The Effect of Pea Chloroplast Alignment and Variation of Excitation Wavelength on the Circularly Polarized Chlorophyll Luminescence. Journal of Fluorescence 14, 207–216 (2004). https://doi.org/10.1023/B:JOFL.0000016293.52545.56

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOFL.0000016293.52545.56

  • chiral macroaggregates of LHCII
  • anisotropy of CPL
  • circular dichroism of chloroplasts