Skip to main content
Log in

Modulation of Fluorophore Environment in Host Membranes of Varying Charge

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The net electrical charge of the biological membrane represents an important parameter in the organization, dynamics and function of the membrane. In this paper, we have characterized the change in the microenvironment experienced by a membrane-bound fluorescent probe when the charge of the phospholipids constituting the host membrane is changed from zwitterionic to cationic with minimal change in the chemical structure of the host lipid. In particular, we have explored the difference in the microenvironment experienced by the fluorescent probe 2-(9-anthroyloxy)stearic acid (2-AS) in model membranes of zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and cationic 1-palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine (EPOPC) which are otherwise chemically similar, using the wavelength-selective fluorescence approach and other fluorescence parameters. Our results show that the microenvironment experienced by a membrane probe such as 2-AS is different in POPC and EPOPC membranes, as reported by red edge excitation shift (REES) and other fluorescence parameters. The difference in environment encountered by the probe in the two cases could possibly be due to variation in hydration in the two membranes owing to different charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Chattopadhyay and S. Mukherjee (1993). Fluorophore environments in membrane-bound probes: A red edge excitation shift study. Biochemistry 32, 3804-3811.

    Google Scholar 

  2. S. Mukherjee and A. Chattopadhyay (1995). Wavelength-selective fluorescence as a novel tool to study organization and dynamics in complex biological systems. J. Fluorescence 5, 237-246.

    Google Scholar 

  3. A. Chattopadhyay (2002). Application of the wavelength-selective fluorescence approach to monitor membrane organization and dynamics. In Fluorescence Spectroscopy, Imaging and Probes, R. Kraayenhof, A. J. W. G. Visser, and H. C. Gerritsen (Eds.), Springer-Verlag, Heidelberg, Germany, pp. 211-224.

    Google Scholar 

  4. A. Chattopadhyay (2003). Exploring membrane organization and dynamics by the wavelength-selective fluorescence approach. Chem. Phys. Lipids 122,3-17.

    Google Scholar 

  5. A. P. Demchenko (1988). Site-selective excitation: A new dimension in protein and membrane spectroscopy. Trends Biochem. Sci. 13, 374-377.

    Google Scholar 

  6. A. P. Demchenko (2002). The red-edge effects: 30 years of exploration. Luminescence 17,19-42.

    Google Scholar 

  7. D. Haussinger (1996). The role of cellular hydration in the regulation of cell function. Biochem. J. 313, 697-710.

    Google Scholar 

  8. P. Mentré (Ed.)(2001). Water in the cell. Cell. Mol. Biol. 47, 709-970.

    Google Scholar 

  9. C. Ho and C. D. Stubbs (1992). Hydration at the membrane protein–lipid interface. Biophys. J. 63, 897-902.

    Google Scholar 

  10. W. B. Fischer, S. Sonar, T. Marti, H. G. Khorana, and K. J. Rothschild (1994). Detection of a water molecule in the active-site of bacteriorhodopsin: Hydrogen bonding changes during the primary photoreaction. Biochemistry 33, 12757-12762.

    Google Scholar 

  11. H. Kandori, Y. Yamazaki, J. Sasaki, R. Needleman, J. K. Lanyi, and A. Maeda (1995). Water-mediated proton transfer in proteins: An FTIR study of bacteriorhodopsin. J. Am. Chem. Soc. 117, 2118-2119.

    Google Scholar 

  12. R. Sankararamakrishnan and M. S. P. Sansom (1995). Water-mediated conformational transitions in nicotinic receptor M2 helix bundles: A molecular dynamics study.s FEBS Lett. 377, 377-382.

    Google Scholar 

  13. S. Mukherjee and A. Chattopadhyay (1994). Motionally restricted tryptophan environments at the peptide–lipid interface of gramicidin channels. Biochemistry 33, 5089-5097.

    Google Scholar 

  14. A. Chattopadhyay and R. Rukmini (1993). Restricted mobility of the sole tryptophan in membrane-bound mellitin. FEBS Lett. 335, 341-344.

    Google Scholar 

  15. A. K. Ghosh, R. Rukmini, and A. Chattopadhyay (1997). Modulation of tryptophan environment in membrane-bound melittin by negatively charged phospholipids: Implications in membrane organization and function. Biochemistry 36, 14291-14305.

    Google Scholar 

  16. A. Chattopadhyay and S. Mukherjee (1999). Depth-dependent solvent relaxation in membranes: Wavelength-selective fluorescence as a membrane dipstick. Langmuir 15, 2142-2148.

    Google Scholar 

  17. A. Chattopadhyay and S. Mukherjee (1999). Red edged excitation shift of a deeply embedded membrane probe: Implications in water penetration in the bilayer. J. Phys. Chem. B 103, 8180-8185.

    Google Scholar 

  18. S. McLaughlin (1989). The electrostatic properties of membranes. Annu. Rev. Biophys. Biophys. Chem. 18, 113-136.

    Google Scholar 

  19. R. N. A. H. Lewis, I. Winter, M. Kriechbaum, K. Lohner and R. N. McElhaney (2001). Studies of the structure and organization of cationic lipid bilayer membranes: Calorimetric, spectroscopic, and X-ray diffraction studies of linear saturated P-O-Ethyl phosphatidylcholines. Biophys. J. 80, 1329-1342.

    Google Scholar 

  20. J. C. Dittmer and R. L. Lester (1964). A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. J. Lipid Res. 5, 126-127.

    Google Scholar 

  21. C. W. F. McClare (1971). An accurate and convenient organic phosphorus assay. Anal. Biochem. 39, 527-530.

    Google Scholar 

  22. R. P. Haugland (1996). Handbook of Fluorescent Probes and Research Chemicals, (6th Ed.), Molecular Probes Inc., Eugene, OR.

    Google Scholar 

  23. R. C. MacDonald, R. I. MacDonald, B. P. Menco, K. Takeshita, N. K. Subbarao, and L. R. Hu (1991). Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim. Biophys. Acta 1061, 297-303.

    Google Scholar 

  24. R. F. Chen and R. L. Bowman (1965). Fluorescence polarization: Measurement with ultraviolet-polarizing filters in a spetrophotoflu-orometer. Science 147, 729-732.

    Google Scholar 

  25. P. R. Bevington (1969). Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New York.

    Google Scholar 

  26. D. V. O'Connor and D. Phillips (1984). Time-Correlated Single Photon Counting, Academic Press, London, 180-189.

    Google Scholar 

  27. R. A. Lampert, L. A. Chewter, D. Phillips, D. V. O'Connor, A. J. Roberts, and S. R. Meech (1983). Standards for nanosecond fluorescence decay time measurements. Anal. Chem. 55,68-73.

    Google Scholar 

  28. A. Grinvald and I. Z. Steinberg (1974). On the analysis of fluorescence decay kinetics by the method of least-squares. Anal. Biochem. 59, 583-598.

    Google Scholar 

  29. J. R. Lakowicz (1999). Principles of Fluorescence Spectroscopy, Kluwer-Plenum Press, New York.

    Google Scholar 

  30. R. C. MacDonald, G. W. Ashley, M. M. Shida, V. A. Rakhmanova, Y. S. Tarahovsky, D. P. Pantazatos, M. T. Kennedy, E. V. Pozharski, K. A. Baker, R. D. Jones, H. S. Rosenzweig, K. L. Choi, R. Qiu, and T. J. McIntosh (1999). Physical and biological properties of cationic triesters of phosphatidylcholine. Biophys. J. 77, 2612-2629.

    Google Scholar 

  31. A. T. Young, J. R. Lakey, A. G. Murray, and R. B. Moore (2002). Gene therapy: A lipofection approach for gene transfer into primary endothelial cells. Cell Transplant 11, 573-582.

    Google Scholar 

  32. F. S. Abrams, A. Chattopadhyay, and E. London (1992). Determination of the location of fluorescent probes attached to fatty acids using parallax analysis of fluorescence quenching: Effect of carboxyl ionization state and environment on depth. Biochemistry 31, 5322-5327.

    Google Scholar 

  33. K. R. Thulborn and W. H. Sawyer (1978). Propertiesandthelocations of a set of fluorescent probes sensitive to the fluidity gradient of the lipid bilayer. Biochim. Biophys. Acta 511, 125-140.

    Google Scholar 

  34. J. Villaín and M. Prieto (1991). Location and interaction of N (9-anthroyloxy)-stearic acid probes incorporated in phosphatidylcholine vesicles. Chem. Phys. Lipids 59, 9-16.

    Google Scholar 

  35. R. Hutterer, F. W. Schneider, H. Lanig, and M. Hof (1997). Solvent relaxation behaviour of n-anthroyloxy fatty acids in PC-vesicles and paraffin oil: A time-resolved emission spectra study. Biochim. Biophys. Acta 1323, 195-207.

    Google Scholar 

  36. A. Chattopadhyay and E. London (1987). Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry 26, 39-45.

    Google Scholar 

  37. F. S. Abrams and E. London (1993). Extension of the parallax analysis of membrane penetration depth to the polar region of model membranes: Use of fluorescence quenching by a spin-label attached to the phospholipid polar headgroup. Biochemistry 32, 10826-10831.

    Google Scholar 

  38. T. C. Werner and R. M. Hoffman (1973). Relation between an excited state geometry change and the solvent dependence of 9-methyl anthroate fluorescence. J. Phys. Chem. 77, 1611-1615.

    Google Scholar 

  39. V. Von Tscharner and G. K. Radda (1981). The effect of fatty acids on the surface potential of phospholipid vesicles measured by condensed phase radioluminescence. Biochim. Biophys. Acta 643, 435-448.

    Google Scholar 

  40. I. Winter, G. Pabst, M. Rappolt, and K. Lohner (2001). Refined structure of 1,2-diacyl-P-O-ethylphosphatidylcholine bilayer membranes. Chem. Phys. Lipids 112, 137-150.

    Google Scholar 

  41. J. Seelig, P. M. Macdonald, and P. G. Scherer (1987). Phospholipid head groups as sensors of electric charge in membranes. Biochemistry 26, 7535-7541.

    Google Scholar 

  42. J. B. Massey, H. S. She, and H. J. Pownall (1985). Interfacial properties of model membranes and plasma lipoproteins containing ether lipids. Biochemistry 24, 6973-6978.

    Google Scholar 

  43. A. Sommer, F. Paltauf, and A. Hermetter (1990). Dipolar solvent relaxation on a nanosecond time scale in ether phospholipid membranes as determined by multifrequency phase and modulation flu-orometry. Biochemistry 29, 11134-11140.

    Google Scholar 

  44. L. A. Bagatolli, T. Parasassi, G. D. Fidelio, and E. Gratton (1999). A model for the interaction of 6-lauroyl-2-(N,N dimethylamino)naphthalene with lipid environments: Implications for spectral properties. Photochem. Photobiol. 70, 557-564.

    Google Scholar 

  45. S. S. Rawat and A. Chattopadhyay (1999). Structural transitions in the micellar assembly: A fluorescence study. J. Fluorescence 9, 233-244.

    Google Scholar 

  46. A. Chattopadhyay, S. Mukherjee, and H. Raghuraman (2002). Reverse micellar organization and dynamics: A wavelength-selective fluorescence approach. J. Phys. Chem. B 106, 13002-13009.

    Google Scholar 

  47. R. Kraayenhof, G. J. Sterk, H. W. Wong Fong Sang, K. Krab, and R. M. Epand (1996). Monovalent cations differentially affect membrane surface properties and membrane curvature, as revealed by fluorescent probes and dynamic light scattering. Biochim. Biophys. Acta 1282, 293-302.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitabha Chattopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelkar, D.A., Ghosh, A. & Chattopadhyay, A. Modulation of Fluorophore Environment in Host Membranes of Varying Charge. Journal of Fluorescence 13, 459–466 (2003). https://doi.org/10.1023/B:JOFL.0000008056.25907.ae

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOFL.0000008056.25907.ae

Navigation