Skip to main content
Log in

Radiation Damage Study on Various Structural Refractory Alloys of a Multi-Purpose Reactor

  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Radiation damage properties of structural materials play a key role in design of a fusion–fission (hybrid) reactor. Refractory alloys offer a significant advantage of high neutron wall load capability under fusion neutron environment. In this study, main radiation damage parameters (displacement per atom (DPA) and helium production) on three different refractory alloys, namely W-5Re, TZM (Mo alloy) and Nb–1Zr used as structural material in a hybrid reactor were found. Neutron transport calculations were conducted with the aid of SCALE4.3 System by solving the Boltzmann transport equation with code XSDRNPM. The lowest radiation damage values were obtained for W-5Re alloy. Moreover, all investigated materials will require to be replaced frequently due to their radiation damage values during reactor life (~ 30 years).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. H. Berwald, et al., Fission Suppressed Hybrid Reactor Fusion Breeder, UCID-19327, Lawrence Livermore National Laboratory (1982).

  2. E. Greenspan, Advances in Science and Technology, J. Lewins and M. Becker (Eds), (Plenum Press, 16, 289 1984).

  3. J. D. Lee, et al., Feasibility Study of a Fission-Suppressed Tandem-Mirror Hybrid Reactor Fusion Breeder, UCID-19327 Lawrence Livermore National Laboratory, CA (1982).

    Google Scholar 

  4. R. W. Moir, The Fusion Breeder. Submitted to the National Science Foundation Policy Workshop, Washington DC, March 4–5, UCRL-87290, Lawrence Livermore Laboratory, CA (1982).

    Google Scholar 

  5. M. H. Raghep, et al., Nuclear Performance of Molten Salt Fusion-Fission Symbiotic System for Catalyzed D-D and D-T Reactors, ORNL-TM-6560, Oak Ridge National Laboratory (1979).

  6. S. Şahin and T. Al-Kusayer, Kerntechnik, 47, 259–266 (1985).

    Google Scholar 

  7. S. Şahin and T. A. Al-Kusayer, Fusion Technol., 10, 84–99 (1986).

    Google Scholar 

  8. S. Şahin, H. Yapıcı, E. Baltacioğlu, and T. A. Al-Kusayer, Int. J. Energy-Environ.-Econ., 1, 167–173 (1991).

    Google Scholar 

  9. S. Şahin, H. Yapıcı, and E. Baltacioğlu, Energy Convers. Manag., 39, 899–909 (1998).

    Google Scholar 

  10. S. Şahin, H. Yapıcı, Ann. Nucl. Energy, 26, 13–27 (1999).

    Google Scholar 

  11. S. Şahin, H. Yapıcı, M. Bayrak, Fus. Eng Des., 47, 9–23 (1999).

    Google Scholar 

  12. S. Şahin, V. Özceyhan, and H. Yapıcı, Ann. Nucl. Energy, 28, 203–223 (2001).

    Google Scholar 

  13. S. Şahin, H. Yapıcı, and N. Şahin, Fusion. Eng. Des., 54, 63–77 (2001).

    Google Scholar 

  14. S. Şahin, Yalçın, H. M. Şahin, and M. Übeyli, Ann. Nucl. Energy, 30, 669–683 (2003).

    Google Scholar 

  15. S. Şahin, Yalçın, H. M. Şahin, and M. Übeyli, Ann. Nuc. Energy, 30, 245–259, (2003).

    Google Scholar 

  16. S. Şahin and M. Übeyli, Energy Convers. Manag., 45, 1497–1512 (2004).

    Google Scholar 

  17. H. Yapıcı, M. Übeyli, and Ş. Yalçın, Ann. Nucl. Energy, 29, 1871–1889 (2002).

    Google Scholar 

  18. H. Yapıcı, O. İpek, and M. Übeyli, Energy Convers. Manag., 44, 573–595 (2003).

    Google Scholar 

  19. S. Şahin and M. Übeyli, Ann. Nucl. Energy, 31, 871–890 (2004).

    Google Scholar 

  20. S. Şahin and H. Yapıcı, Fusion Technol., 16, 331–345 (1989).

    Google Scholar 

  21. S. Şahin, H. Yapıcı, and E. Baltacioğlu, Kerntechnik, 59, 270–277 (1994).

    Google Scholar 

  22. S. Şahin, H. Yapıcı, Ann. Nucl. Energy, 25, 1317–1339 (1998).

    Google Scholar 

  23. R. W. Moir, Fusion Eng. Des., 5, 269 (1987).

    Google Scholar 

  24. R. W. Moir, Nucl. Eng. Des., 29, 34 (1995).

    Google Scholar 

  25. R. W. Moir, Nucl. Fusion, 37, 557 (1997).

    Google Scholar 

  26. N. C. Christofilos, J. Fusion Energy, 8, 97 (1989).

    Google Scholar 

  27. S. Şahin, R. W. Moir, A. Şahinaslan, and H. M. Şahin, Fusion Technol., 30(3), Part 2A, 1027 (1996).

    Google Scholar 

  28. S. Şahin, A. Şahinaslan, and M. Kaya, Fusion Technol., 34(2), 95 (1998).

    Google Scholar 

  29. R. W. Moir, et al., Fusion Technol., 25, 5 (1994).

    Google Scholar 

  30. M. A. Abdou, The APEX Team. Fusion Eng. Des., 45, 145–167 (1999).

    Google Scholar 

  31. M. A. Abdou, The APEX Team, A. Ying, et al., Fusion Eng. Des., 54, 181 (2001).

  32. M. Z. Youssef and C. Wong, Fusion Eng. Des., 49–50, 727 (2000).

    Google Scholar 

  33. P. Jung, Radiat. Eff. Defects Solids, 113, 109–118 (1990).

    Google Scholar 

  34. C. A. English, Radiat. Eff. Defects Solids, 113, 15–28 (1990).

    Google Scholar 

  35. T. Muroga, Radiat. Eff. Defects Solids, 113, 119–134 (1990).

    Google Scholar 

  36. F. A. Garner, H. L. Heinisch, R. L. Simons, and F. M. Mann, Radiat. Eff. Defects Solids, 113, 229–255 (1990).

    Google Scholar 

  37. N. M. Greene and L. M. Petrie, XSDRNPM, A One-Dimensional Discrete-Ordinates Code For Transport Analysis, NUREG/ CR-0200, Revision 5, 2, Section F3, ORNL/NUREG/CSD-2/V2/R5, Oak Ridge National Laboratory (1997).

  38. S. Şahin, Gazi University, Publication 169, Faculty of Science and Literature, Publication 22, Ankara, Turkey (1991).

  39. W. C. Jordan and S. M. Bowman, Scale Cross-Section Libraries, NUREG/CR-0200, Revision 5, 3, Section M4, ORNL/NUREG/CSD-2/V3/R5, Oak Ridge National Laboratory (1997).

  40. T. A. Al-Kusayer, S. Şahin, and A. Drira, CLAW-IV, Coupled 30 Neutrons, 12 Gamma Ray Group Cross Sections with Retrieval Programs for Radiation Transport Calculations, RSIC Newsletter, Radiation Shielding Information Center, Oak Ridge National Laboratory (1988).

  41. N. M. Greene, BONAMI, Resonance Self-Shielding by the Bondarenko Method, NUREG/CR-0200, Revision 5, 2, Section F1, ORNL/NUREG/CSD-2/V2/R5, Oak Ridge National Laboratory (1997).

  42. N. M. Greene, L. M. Petrie, and R. M. Westfall, NITAWLII, Scale System Module For Performing Resonance Shielding and Working Library Production, NUREG/CR-0200, Revision 5, 2, Section F2, ORNL/NUREG/CSD-2/V2/R5, Oak Ridge National Laboratory (1997).

  43. N. F. Landers, and L. M. Petrie, CSAS, Control Module For Enhanced Criticality Safety Analysis Sequences, NUREG/CR-0200, Revision 5, 1, Section C4, ORNL/NUREG/CSD-2/V1/R5, Oak Ridge National Laboratory (1997).

  44. J. J. Duderstadt, and G. A. Moses, Inertial Confinement Fusion (Wiley New York 1982).

  45. A. Blink, et al., High-Yield Lithium-Injection Fusion Energy (HYLIFE) Reactor, K. L. Essary, and K. E. Lewis (eds.), UCRL-53559, Lawrence Livermore National Laboratory, (1985).

  46. M. Perlado, M. W. Guinan, and K. Abe, Radiation Damage in Structural Materials, Energy from Inertial Fusion, International Atomic Energy Agency, 272, Vienna (1995).

    Google Scholar 

  47. S. Cierjacks, K. Ehrlich, E. T. Cheng, H. Conrads, and H. Ullmaier, Nucl. Sci. Eng., 106, 99–113 (1990).

    Google Scholar 

  48. Abdou, M. A. Fusion Eng. Des., 27, 111–153 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Übeyli, M. Radiation Damage Study on Various Structural Refractory Alloys of a Multi-Purpose Reactor. Journal of Fusion Energy 22, 251–257 (2003). https://doi.org/10.1023/B:JOFE.0000047398.15435.a7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOFE.0000047398.15435.a7

Navigation