Skip to main content
Log in

Evolution of Otolithic Membrane. Structure of Otolithic Membrane in Amphibians and Reptilians

  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Otolithic membrane of utricles, saccules, and lagena of amphibians (Bufo bufo, Xenopus laevis, Rana temporaria) and reptiles (Teratoscincus scincus, Agama sanguinolenta, Ophisaurus apodus, Caiman crocodilus) were studied using light and scanning electron microscopy. Otolithic membrane in various otolithic organs in all studied animals was found to differ by shape, size, structure, and composition of otoconia. Otolithic membrane of utricle of amphibians and reptiles represents a thin plate of non-uniform structure. Otolithic apparatus in saccule represents a large cobble-stone-like conglomerate of otoconia. Otolithic membrane of lagena looks like a bent plate and is poorly differentiated in amphibians, but well differentiated in reptiles. Thus, transition of vertebrates to the earth surface was accompanied by a fundamental reorganization of otolithic membrane structure. Otolithic membrane containing constantly growing large otolith (in fish) was replaced by a thin structurally differentiated otolithic membrane that ceases its growth at early stages of ontogenesis. However, this replacement did not occur simultaneously in all otolithic organs. The changes initially involved otolithic membrane of utricle. Saccule of amphibians and reptiles has a typical compositional otolith. In the course of further phylogenetic development of tetrapods the process of structural differentiation of otolithic membrane was enhanced and otoliths were completely lost. In parallel, there proceeded a process of replacement of prismatic and spindle-shaped aragonitic otoconia by calcitic barrel-shaped otoconia. The data obtained confirm our hypothesis put forward earlier about two directions of evolution of otolithic membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Lychakov, D.V., Evolution of Otolithic Membrane: the Structural Organization, Zh. Evol. Biokhim. Fiziol., 1988, vol. 24, pp. 250–261.

    Google Scholar 

  2. Lychakov, D.V., Evolution of Otolithic Membrane: the Functional Organization, Zh. Evol. Biokhim. Fiziol., 1988, vol. 24, pp. 262–268.

    Google Scholar 

  3. Lychakov, D.V., Comparative Study of Otoliths in Some Black Sea Fishes in Relation to Vestibular Function, Zh. Evol. Biokhim. Fiziol., 1990, vol. 26, pp. 550–556.

    Google Scholar 

  4. Lychakov, D.V., Study of Otolithic Membrane Structure in the Lamprey Lamperta fluviatilis in Relation to Evolution of Otoliths and Otoconia, Zh. Evol. Biokhim. Fiziol., 1995, vol. 31, pp. 175–185.

    Google Scholar 

  5. Lychakov, D.V., Study of Otolithic Apparatus of the Chondrostei Fry, Zh. Evol. Biokhim. Fiziol., 1995, vol. 31, pp. 328–336.

    Google Scholar 

  6. Fermin, C.D., Lychakov, D.V., Campos, A., Hara, H., Sondag, E., Jones, T., Jones, S., Taylor, M., Mesa-Ruiz, G., and Martin, D.S., Otoconia Biogenesis, Phylogeny, Composition and Functional Attributes, Histol. Histopathol., 1998, vol. 13, pp. 1103–1154.

    Google Scholar 

  7. Lychakov, D.V., Boyadzhieva-Mikhailova, A., Christov, I., and Evdokimov, I.I., Otolithic Apparatus in Black Sea Elasmobranchs, Fish. Res., 2000, vol. 1003, pp. 1–12.

    Google Scholar 

  8. Lychakov, D.V. and Rebane, Y.T., Otolith Regularities, Hear. Res., 2000, vol. 143, pp. 83–102.

    Google Scholar 

  9. Hudspeth, A. and Corey, D.P., Sensitivity, Polarity and Conductance Change in the Response of Vertebrate Hair Cells to Controlled Mechanical Stimuli, Proc. Natl Acad. Sci. USA, 1977, vol. 74, pp. 2407–2411.

    Google Scholar 

  10. Carlstrom, D., A Crystallographic Study of Vertebrate Otoliths, Biol. Bull., 1963, vol. 125, pp. 441–463.

    Google Scholar 

  11. Tretiakov, D.K., Sensory Organs of River Lamprey, Zap. Imperators. Novorossiis. Univ., 1917, vol. 8, pp. 1–644.

    Google Scholar 

  12. Lindeman, H.H., Anatomy of the Otolith Organs, Adv. Oto-Rhino-Laryng., 1973, vol. 20, pp. 405–433.

    Google Scholar 

  13. Lim, D.J., The Statoconia of the Non-Mammalian Species, Brain Behav. Evol., 1974, vol. 10, pp. 37–51.

    Google Scholar 

  14. Pote, K.G. and Ross, M.D., Each Otoconia Polymorph Has a Protein Unique to That Polymorph, Comp. Biochem. Physiol., 1991, vol. 98B, pp. 203–222.

    Google Scholar 

  15. Bulog, B., Tectorial Structures on the Inner Ear Sensory Epithelia of Proteus anguinus (Amphibia, Caudata), J. Morphol., 1989, vol. 201, pp. 59–68.

    Google Scholar 

  16. Steyger, P.S., Wiederhold, M.L., and Batten, J., The Morphogenetic Features of Otoconia during Larval Development of Cynops pyrrhogaster, the Japanese Red-Bellied Newt, Hear. Res., 1995, vol. 84, pp. 61–71.

    Google Scholar 

  17. Kido, T. and Takahashi, M., Scanning Electron Microscopic Study of Amphibians Otoconia, Auris Nasus Larynx, 1997, vol. 24, pp. 125–130.

    Google Scholar 

  18. Oukda, M., François, M., Membre, H., Bautz, A., and Dournon, C., Crystallographic and Chemical Composition of Otoconia in the Salamander Pleurodeles waltl, Hear. Res., 1999, vol. 132, pp. 85–93.

    Google Scholar 

  19. Lewis, E.E. and Li, C.W., Hair Cell Types and Distribution in the Otolithic and Auditory Organs of the Bullfrog, Brain Res., 1975, vol. 83, pp. 35–50.

    Google Scholar 

  20. Li, C.W. and Lewis, E.E., Structure and Development of Vestibular Hair Cells in the Larval Bullfrog, Ann. Otol. Rhinol. Laryngol., 1979, vol. 88, pp. 427–437.

    Google Scholar 

  21. Marmo, F., Balsamo, G., and Franco, E., Calcite in the Statoconia of Amphibians: a Detailed Analysis in the Frog Rana esculenta, Cell Tiss. Res., 1983, vol. 233, pp. 35–43.

    Google Scholar 

  22. Pote, K.G. and Ross, M.D., Utricular Otoconia of Some Amphibians Have Calcitic Morphology, Hear. Res., 1993, vol. 67, pp. 189–197.

    Google Scholar 

  23. Horn, E., Lang, U.-G., and Rayer, B., The Development of the Static Vestibuloocular Reflex in the Southern Clawed Toad, Xenopus laevis. I. Intact Animals, J. Comp. Physiol., 1986, vol. 159A, pp. 879–885.

    Google Scholar 

  24. Lim, D.J., Fine Morphology of the Otoconial Membrane and Its Relationship to the Sensory Epithelium, Scan. Electron Microsc., 1979, vol. 3, pp. 929–938.

    Google Scholar 

  25. Lim, D.J., Morphogenesis and Malformation of Otoconia: A Review, Birth Defects: Original Articles Series, 1980, vol. 16, no. 4, pp. 111–146.

    Google Scholar 

  26. Johnsson, L.G. and Hawkins, J.E., Otolithic Membranes of Saccule and Utricle in Man, Science, 1967, vol. 157, pp. 1454–1456.

    Google Scholar 

  27. Johnsson, L.G., Wright, C.G., Preston, R.E., and Henry, P.J., Defects of the Otoconial Membranes in Normal Guinea Pigs, Acta Otol., 1980, vol. 89, pp. 93–104.

    Google Scholar 

  28. Tikhomirova, L.I., Structural Organization and Orientation of Macula Hair Cells of Saccule of the Membranous Labyrinth of the Brown Frog, Arkh. Anat. Gistol. Embriol., 1984, vol. 87, no. 11, pp. 37–41.

    Google Scholar 

  29. Kido, T., Identification of Calcitic and Aragonitic Otoconia by Selective Staining Methods, Acta Histochem. Cytochem., 1996, vol. 29, pp. 121–127.

    Google Scholar 

  30. Deer, W.A., Howei, R.A., and Zussman, J., Porodoobrazuyushchie mineraly, tom 5, Nesilikatnye mineraly (Rock-Forming Minerals, vol. 5, Non-Silicate Minerals), Moscow, 1966.

  31. Corwin, J.T., Perpetual Production of Hair Cells and Maturational Changes in Hair Cell Ultrastructure Accompany Postembryonic Growth in an Amphibian Ear, Proc. Natl. Acad. Sci. USA, 1985, vol. 82, pp. 3911–3915.

    Google Scholar 

  32. Lychakov, D.V., Structure of Surface of Otolithic Organs of Larva of the Clawed Frog Xenopus laevis, Zh. Evol. Biokhim. Fiziol., 1984, vol. 20, pp. 391–397.

    Google Scholar 

  33. Oukda, M., Bautz, A., Membre, H., Ghanbaja, J., François, M., and Dournon, C., Appearance and Evolution of Calcitic and Aragonitic during Pleurodeles waltl development, Hear. Res., 1999, vol. 137, pp. 114–126.

    Google Scholar 

  34. Ross, M.D. and Pote, K.G., Some Properties of Otoconia, Phil. Trans. R. Soc. Lond B., 1984, vol. 304, pp. 445–452.

    Google Scholar 

  35. Marmo, F., Franco, E., and Balsamo, G., Scanning Electron Microscopic and X-Ray Diffraction Studies of Otoconia in the Lizard Podarcis s. sicula, Cell Tiss. Res., 1981, vol. 218, pp. 265–232.

    Google Scholar 

  36. Lychakov, D.V., Otolithic Membrane. Structural and Functional Organization, Evolution, Ecomorphological Plasticity, and Resistance to Extreme Effects, Doctorate Sci. Diss., St. Petersburg, 2002.

  37. Gauldie, R.W., Dunlop, D., and Tse, J., The Remarkable Lungfish Otolith, New Zealand J. Mar. Freshwater Res., 1986, vol. 20, pp. 81–92.

    Google Scholar 

  38. Berg, L.S., Trudy po teorii evolyutsii, 1922–1930 (Studies on the Theory of Evolution, 1922–1930), Leningrad, 1977.

  39. Ahlberg, P.E. and Milner, A.R., The Origin and Early Diversification of Tetrapoda, Nature (Lond.), 1994, vol. 368, pp. 507–514.

    Google Scholar 

  40. Zhu, M. and Yu, X., A Primitive Fish Close to Common Ancestor of Tetrapods and Lungfish, Nature (Lond.), 2002, vol. 418, pp. 767–770.

    Google Scholar 

  41. Myging, S.H., Continued Studies on the Functional Mechanism of the Labyrinthine Sensory Epithelia, Acta Otol., 1969, Suppl. 249, pp. 1–32.

  42. Tsyrul'nikov, E.M., On Functional Connections of Midbrain Auditory Area and of Saccule in the Frog Rana temporaria, Zh. Evol. Biokhim. Fiziol., 1977, vol. 13, pp. 486–490.

    Google Scholar 

  43. Baird, R.A. and Lewis, E.R., Correspondences between Afferent Innervation Patterns and Response Dynamics in the Bullfrog Utricle and Lagena, Brain Res., 1986, vol. 369, pp. 48–64.

    Google Scholar 

  44. Cortopassi, K.A. and Lewis, E.R., High-Frequency Tuning Properties of Bullfrog Lagenar Vestibular Afferent Fibers, J. Vestibul. Res., 1996, vol. 6, pp. 105–119.

    Google Scholar 

  45. Smotherman, M.S. and Narins, P.M., Hair Cells, Hearing and Hopping: A Field Guide to Hair Cell Physiology in the Frog, J. Exp. Biol., 2000, vol. 203, pp. 2237–2246.

    Google Scholar 

  46. Lewis, E.R. and Narins, P.M., Do Frogs Communicate with Seismic Signals?, Science, 1985, vol. 227, pp. 187–189.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lychakov, D.V. Evolution of Otolithic Membrane. Structure of Otolithic Membrane in Amphibians and Reptilians. Journal of Evolutionary Biochemistry and Physiology 40, 331–342 (2004). https://doi.org/10.1023/B:JOEY.0000042638.35785.f3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOEY.0000042638.35785.f3

Keywords

Navigation