Skip to main content
Log in

Effects of NO-Synthase Inhibitors on Development of Sea Urchin Embryos

  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Effects of NO-synthase inhibitors Nω-nitro-L-arginine (L-NA) and its methylated ether (L-NAME) on embryonic development of sea urchins Paracentrotus lividus and Arbacia lixula were studied from the time of fertilization to the stage of transition to active nutrition (stage of the later pluteus 2). It has been shown that L-NAME (but not D-NAME) and L-NA (0.01–0.02 mM) produce a dose-dependent inhibition of growth of arms and apex of pluteus larvae, while differentiation of the intestine, coelom, pigment cells, and ciliated epithelium occurs without observable disturbances. A period of sensitivity to NO-synthase inhibitors was revealed; it coincided with the beginning of intensive spiculogenesis leading to elongation of arms and apex of the pluteus larva of the stage (prism 2—early pluteus 2). It is suggested that interaction of ectodermal cells with the primary mesenchime cells and extracellular matrix in morphogenetic processes providing formation of arms and apex of the pluteus larva can be modulated by NO in ontogenesis of sea urchins P. lividus and A. lixula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Barroso, R.P., Osuamkpe, C., Nagamani, M., and Yallampalli, C., Nitric Oxide Inhibits Development of Embryos and Implantation in Mice, Mol. Hum. Reprod., 1998, vol. 4, pp. 503–507.

    Google Scholar 

  2. Couge, R.C., Marshburn, P., Gordan, B.E., Nunley, W., and Huethudson, Y.M., Nitric Oxide as a Regulator of Embryonic Development, Biol. Reprod., 1998, vol. 58, pp. 875–879.

    Google Scholar 

  3. Abe, K., Matsuoka, K., Inoue, N., Taga, M., and Kato, T., Messenger RNA of Neuronal Nitric Oxide Synthase Is Expressed and Possibly Functions in Mouse Oocytes and Embryos during Preimplantation Development, Biomed. Res. (Tokyo), 1999, vol. 20, pp. 61–65.

    Google Scholar 

  4. Joo, B.S., Park, S.H., Park, S.J., Kang, H.S., Moon, H.S., and Kim, H.D., The Effect of Nitric Oxide on Sperm Cell Function and Embryo Development, Amer. J. Reprod. Immunol., 1999, vol. 42, no. 6, pp. 327–334.

    Google Scholar 

  5. Sengoku, K., Takuma, N., Norikawa, M., Tsuchiya, K., Komori, H., Sharifa, D., Tamate, L., and Ishikawa, M., Requirement of Nitric Oxide for Murine Oocyte Maturation, Embryo Development, and Trophoblast Outgrowth in vitro, Mol. Reprod. Dev., 2001, vol. 58, no. 3, pp. 262–268.

    Google Scholar 

  6. Peunova, N. and Enikolopov, G., Nitric Oxide Triggers a Switch to Growth Arrest during Differentiation of Neuronal Cells, Nature (Lond.), 1995, vol. 375, pp. 68–73.

    Google Scholar 

  7. Nakagawa, H., Yoshida, M., and Miyamoto, S., Nitric Oxide Underlies the Differentiation of PC12 Cells Induced by Depolarization with High KCl, J. Biochem., 2000, vol. 127, pp. 113–119.

    Google Scholar 

  8. Lee, K.H., Back, M.Y., Moon, K.Y., Song, W.K., Chung, C.H., Ha, D.B., and Kang, M.S., Nitric Oxide as a Messenger Molecule for Myoblast Fusion, J. Biol. Chem., 1994, vol. 269, pp. 14 371–14 374.

    Google Scholar 

  9. Kim, D.K., Hong, E.K., Lee, K.H., Ilkin, J., and Song, W.K., Molecular Cloning and Expression of Nitric Oxide Synthase Gene in Chick Embryonic Muscle Cells, Cell Biochem. Function, 1999, vol. 17, pp. 261–270.

    Google Scholar 

  10. Bloch, W., Fleishmann, B.K., Lorke, D.E., Andressen, C., Hops, B., Hescheler, J., and Addicks, K., Nitric Oxide Synthase Expression and Role During Cardiomyogenesis, Cardiovascular Res., 1999, vol. 43, no. 3, pp. 675–684.

    Google Scholar 

  11. Kuzin, B., Roberts, I., Peunova, N., and Enikolopov, G., Nitric Oxide Regulates Cell Proliferation During Drosophila Development, Cell, 1996, vol. 87, pp. 639–649.

    Google Scholar 

  12. Heck, D.E., Laskin, J.D., Zigman, S., and Troll, W., NG-Monomethyl-L-Arginine Inhibits Arbacia Fertilization and Differentiation, Biol. Bull., 1994, vol. 187, pp. 248–249.

    Google Scholar 

  13. Heck, D.E., Louis, L., Gallo, M.A., and Laskin, J.D., Modulation of the Development of Plutei by Nitric Oxide in the Sea Urchin Arbacia punctulata, Biol. Bull., 2000, vol. 199, no. 2, pp. 195–197.

    Google Scholar 

  14. Kuo, R.C., Baxter, G.T., Thompson, S.H., Stricker, S.A., Patton, C., Bonaventura, J., and Epel, D., NO Is Necessary and Sufficient for Egg Activation and Fertilization, Nature (Lond.), 2000, vol. 406, pp. 633–636.

    Google Scholar 

  15. Serezhenkov, V.A., Semenova, M.N., Vanin, A.F., and Ozernyuk, N.D., Detection of Nitric Oxide in Embryogenesis of Sea Urchin by the NMR-Spectrosopy (in press).

  16. Turpaev, K.T., Role of Nitric Oxide in Signal Transmission Between Cells, Mol. Biol., 1998, vol. 32, pp. 581–591.

    Google Scholar 

  17. Buznikov, G.A. and Podmarev, V.I., Sea Urchins Strongylocentrotus dríobachiensis, S. intermetius, and S. nudus, Ob”ekty biologii razvitiya (Objects of Developmental Biology), Moscow, 1975, pp. 188–216.

  18. Moroz, L.L., Norby, S.W., Cruz, L., Sweedler, J.V., Gillette, R., and Clarkson, R.B., Non-Enzymatic Production of Nitric Oxide (NO) from NO Synthase Inhibitors, Biochem. Biophys. Res. Commun., 1998, vol. 253, pp. 571–576.

    Google Scholar 

  19. Czihak, G., tiThe Sea Urchin Embryo. Biochemistry and Morphogenesis, New York, 1973.

  20. Giudice, G., tiThe Sea Urchin Embryo. A Developmental Biological System, Berlin: Springer Verlag, 1986.

  21. Gustafson, T. and Wolpert, L., Cellular Mechanisms in the Morphogenesis of the Sea Urchin Larva, Exp. Cell Res., 1961, vol. 22, pp. 509–520.

    Google Scholar 

  22. Ettensohn, C.A. and Malinda, K.M., Size Regulation and Morphogenesis: A Cellular Analysis of Skeletogenesis in the Sea Urchin Embryo, Development, 1993, vol. 119, no. 1, pp. 155–167.

    Google Scholar 

  23. Guss, K.A. and Ettensohn, C.A., Skeletal Morphogenesis in the Sea Urchin Embryo: Regulation of Primary Mesenchyme Gene Expression and Skeletal Rod Growth by Ectoderm-Derived Cues, Development, 1997, vol. 124, no. 10, pp. 1899–1908.

    Google Scholar 

  24. Tesoro, V., Zito, F., Yokota, Y., Nakano, E., Sciarrino, S., and Matranga, V., A Protein of the Basal Lamina of the Sea Urchin Embryo, Dev. Growth Differ., 1998, vol. 40, pp. 527–535.

    Google Scholar 

  25. Zito, F., Tesoro, V., McClay, D.R., Nakano, E., and Matranga, V., Ectoderm Cell-ECM Interaction Is Essential for Sea Urchin Embryo Skeletogenesis, Dev. Biol., 1998, vol. 196, pp. 184–192.

    Google Scholar 

  26. Gustafson, T. and Wolpert, L., The Cellular Basis of Morphogenesis and Sea Urchin Development, Int. Rev. Cytol., 1963, vol. 15, pp. 139–214.

    Google Scholar 

  27. Goligorsky, M.S., Abedi, H., Noiri, E., Takhajan, A., Lense, S., Romanov, V., and Zachary, J., Nitric Oxide Modulation of Focal Adhesions in Endothelial Cells, Am. J. Physiol., 1999, vol. 276, pp. C1271-C1281.

    Google Scholar 

  28. Neubert, R., Hinz, N., Theil, R., and Neubert, D., Down-Regulation of Adhesion Receptors on Cells of Primate Embryos a a Probable Mechanism of the Teratogenic Action of Thalidomide, Life Sci., 1996, vol. 58, pp. 295–316.

    Google Scholar 

  29. Mateyko, G.M., Developmental Modifications in Arbacia punctulata by Various Metabolic Substances, Biol. Bull., 1967, vol. 133, pp. 184–228.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semenova, M.N., Ozernyuk, N.D. Effects of NO-Synthase Inhibitors on Development of Sea Urchin Embryos. Journal of Evolutionary Biochemistry and Physiology 40, 282–287 (2004). https://doi.org/10.1023/B:JOEY.0000042632.53024.b8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOEY.0000042632.53024.b8

Keywords

Navigation