Skip to main content
Log in

Homeostasis of Sodium and Potassium Ions in Erythrocytes of the Lamprey Lampetra fluviatilis: Effect of Ion Transport and Metabolic Blockers, and Ionophores

  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

After incubation of lamprey Lampetra fluviatilis erythrocytes in the standard medium for 90–120 min, intracellular Na+ and K+ content remained unchanged (28.7 ± 1.1 and 66.3 ± 1.5 mmol/l cells, respectively, n = 33). The erythrocyte ion content also did not change after treatment of the cells with ion transport inhibitors, Ba2 + and amiloride. Addition of 0.1 mM ouabain to the incubation medium led to a decrease of K+ content by 8.4 ± 1.2 and to an increase of Na+ content by 2.4 ± 0.8 mmol/l/2 h. Similar reciprocal changes in the cellular ion composition were observed after treatment of the erythrocytes by oxidative metabolism inhibitors (rotenone and CCCP—carbonyl cyanide m-chlorophenyl-hydrazone). The metabolic blockers produced more significant ion composition changes in comparison with ouabain. An increase of intracellular Na+ content under effect of CCCP was completely inhibited by amiloride. It can be suggested that inhibition of oxidative metabolism is accompanied by a cell acidification and Na+/H+ exchange activation. Erythrocyte acidification by a K+/H+ ionophore led to a rapid cellular Na+ accumulation, which indicates the presence of a Na+/H+ exchanger with high activity. The K+ ionophore valinomycin produced a relatively small K+ loss from the lamprey erythrocytes to indicate a low anion conductance of the cells. The data obtained indicate an important role of oxidative metabolism in the monovalent ion homeostasis in the lamprey red blood cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Palfrey, H.C. and Greengard, P., Hormone-Sensitive Ion Transport System in Erythrocytes as Models for Epithelial Ion Transport Pathways, Ann. NY Acad. Sci., 1981, vol. 372, pp. 291–308.

    Google Scholar 

  2. Muzyamba, M.C., Cossins, A.R., and Gibson, J.S., Regulation of Na+-K+-2Cl- Cotransport in Turkey Red Cells: the Role of Oxygen Tension and Protein Phosphorylation, J. Physiol., 1999, vol. 517, pp. 421–429.

    Google Scholar 

  3. Nikinmaa, M. and Boutilier, R.G., Adrenergic Control of Red Cell pH, Organic Phosphate Concentrations and Haemoglobin Function in Teleost Fish, Adv. Comp. Environ. Physiol., 1995, vol. 21, pp. 107–133.

    Google Scholar 

  4. Malapert, M., Guizouarn, H., Fievet, B., Jahns, R., Garcia-Romeu, F., Motais, R., and Borgese, F., Regulation of Na+/H+ Antiporter in Trout Red Blood Cells, J. Exp. Biol., 1997, vol. 200 (Part 2), pp. 353–360.

    Google Scholar 

  5. Ellory, J.C., Wolowyk, M.W., and Young, G.D., Hagfish (Eptatretus stouti) Erythrocytes Show Minimal Chloride Transport Activity, J. Exp. Biol., 1987, vol. 129, pp. 377–383.

    Google Scholar 

  6. Nikinmaa, M. and Railo, E., Anion Movements Across Lamprey (Lampetra fluviatilis) Red Cell Membrane, Biochim. Biophys. Acta, 1987, vol. 899, pp. 134–136.

    Google Scholar 

  7. Bogdanova, A.Y., Sherstobitov, A.O., and Gusev, G.P., Chloride Transport in Red Blood Cells of Lamprey Lampetra fluviatilis: Evidence for a Novel Anion-Exchange System, J. Exp. Biol., 1998, vol. 201, pp. 693–700.

    Google Scholar 

  8. Gusev, G.P., Sherstobitov, A.O., and Skulskii, I.A., Potassium Transport in Lamprey (Lampetra fluviatilis) Erythrocytes: Evidence for K+ Channels, Comp. Biochem. Physiol., 1992, vol. 101A, pp. 569–572.

    Google Scholar 

  9. Virkki, L.V. and Nikinmaa, M., Two Distinct K+ Channels in Lamprey (Lampetra fluviatilis) Erythrocyte Membrane Characterized by Single Channel Patch Clamp, J. Membr. Biol., 1998, vol. 163, pp. 47–53.

    Google Scholar 

  10. Gusev, G.P., Sherstobitov, A.O., and Bogdanova, A.Y., Sodium Transport in Red Blood Cells of Lamprey Lampetra fluviatilis, Comp. Biochem. Physiol., 1992, vol. 103 A, pp. 763–766.

    Google Scholar 

  11. Gusev, G.P. and Sherstobitov, A.O., An Amiloride-Sensitive, Volume-Dependent Na+ Transport across the Lamprey Erythrocyte Membrane, Gen. Physiol. Biophys., 1996, vol. 15, pp. 129–143.

    Google Scholar 

  12. Gusev, G.P., Sherstobitov, A.O., Ivanova, T.I., and Bogdanova, A.Y., Role of Oxidative Metabolism in Energy Supply of Active Potassium Transport in Erythrocytes of the Lamprey Lampetra fluviatilis, Zh. Evol. Biokhim. Physiol., 2001, vol. 37, pp. 170–175.

    Google Scholar 

  13. Andreoli, T.E., Tieffenberg, M., and Tosteson, D.C., The Effect of Valinomycin on the Ionic Permeability of Thin Lipid Membranes, J. Gen. Physiol., 1967, vol. 50, pp. 2527–2545.

    Google Scholar 

  14. Bennekou, P., K+-Valinomycin and Chloride Conductance of the Human Red Cell Membrane. Influence of the Membrane Protonophore Carbonylcyanide m-Chlorophenylhydrazone, Biochim. Biophys. Acta., 1984, vol. 776, pp. 1–9.

    Google Scholar 

  15. Soltoff, S.P. and Mandel, L.J., Potassium Transport in the Rabbit Renal Proximal Tubule: Effects of Barium, Ouabain, Valinomycin, and Other Ionophores, J. Membr. Biol., 1986, vol. 94, pp. 153–161.

    Google Scholar 

  16. Blasko, K., Shagina, L.V., Gyorgyi, S., and Lev, A.A., The Mode of Action of Some Antibiotics on Red Blood Cell Membrane, Gen. Physiol. Biophys., 1986, vol. 5, pp. 625–635.

    Google Scholar 

  17. Prabhananda, B.S. and Ugrankar, M.M., Nigericin-Mediated H+, K+ and Na+ Transports across Vesicular Membrane: T-Jump Studies, Biochim. Biophys. Acta, 1991, vol. 1070, pp. 481–491.

    Google Scholar 

  18. Rose, C.R. and Ransom, B.R., Intracellular Sodium Homeostasis in Rat Hippocampal Astrocytes, J. Physiol., 1996, vol. 491, pp. 291–305.

    Google Scholar 

  19. Cumberbatch, M. and Morgan, B., A Simple Technique for the Measurement of Ouabain-Sensitive Sodium Transport in Red Cells, Clin. Chim. Acta, 1978, vol. 89, pp. 221–230.

    Google Scholar 

  20. Macphail, S., Thomas, T.H., Wilkinson, R., Davison, J.M., and Dunlop, W., A Serial Study of Erythrocyte Sodium Content and Sodium Pump Kinetics in Pregnancy, Clin. Sci., 1990, vol. 79, pp. 631–638.

    Google Scholar 

  21. Gusev, G.P. and Sherstobitov, A.O., Ionic Mechanisms of Regulation of Erythrocyte Volume in Lamprey Lampetra fluviatilis, Zh. Evol. Biokhim. Physiol., 1997, vol. 33, pp. 398–405.

    Google Scholar 

  22. Tosteson, D.C., Cook, P., Andreoli, T., and Tieffenberg, M., The Effect of Valinomycin on Potassium and Sodium Permeability of HK and LK Sheep Red Cells, J. Gen. Physiol., 1967, vol. 50, pp. 2513–2525.

    Google Scholar 

  23. Gusev, G.P., Fleishman, D.G., Nikiforov, V.A., and Sherstobitov, A.O., Potassium Channels of the Lamprey Erythrocyte Membrane Exhibit a High Selectivity to K+ over Rb+: A Comparative Study of 86Rb and 41K Transport, Gen. Physiol. Biophys., 1997, vol. 16, pp. 273–284.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gusev, G.P., Ivanova, T.I. Homeostasis of Sodium and Potassium Ions in Erythrocytes of the Lamprey Lampetra fluviatilis: Effect of Ion Transport and Metabolic Blockers, and Ionophores. Journal of Evolutionary Biochemistry and Physiology 40, 250–257 (2004). https://doi.org/10.1023/B:JOEY.0000042627.78339.1f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOEY.0000042627.78339.1f

Keywords

Navigation