Skip to main content
Log in

Hemodynamics in the Microcirculation System of the Rat Cerebral Cortex in Nitrite Methemoglobinemia

  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Effects of sodium nitrite on the blood flow rate (V) in microvessels of rat cerebral cortex (5–15 µm in diameter), arterial pressure (AP), plasma osmotic pressure (P osm), and hematological parameters were studied. The mean V and AP in 15 min after administration of NaNO2 (3 mg/100 g mass) decrease by 36% and 45%, while in 30 and 45 min they increase by 14% and 7% and by 20% and 19% as compared with minimal values, respectively. At the end of the experiment, on the background of an elevation of P osm (3%), a decrease of total hemoglobin concentration and of the number of erythrocytes was accompanied by a decrease of the discocyte number from 81 to 35% and a reduction of cell diameters by 7%. It is concluded that NaNO2 produces block of local active mechanisms of the cerebral blood flow regulation. Compensatory responses in this case are provided by passive mechanisms (rheological blood properties) and systemic reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Opol', N.I. and Dobryanskaya, E.V., Nitraty (Nitrates), Kishinev, 1986.

  2. Seredenko, M.M., Mekhanizmy razvitiya i kompensatsii gemicheskoi gipoksii (Mechanisms of Development of Compensation of Hemic Hypoxia), Kiev, 1987.

  3. Mchedlishvili, G.I., Mamaladze, A.A., Gorgeladze, Z.T., and Baramidze, D.G., Multidirectional Responses of Pial and Cortical Arterial Arbors after Postischemic Hyperemia in the Brain Cortex, Fiziol. Zh. SSSR 1989, vol. 75, pp. 1534–1540.

    Google Scholar 

  4. Ivanov, K.P. and Kislyakov, Yu.Ya., Energeticheskie potrebnosti i kislorodnoe obespechenie golovnogo mozga (Energetic Needs and Oxygen Supply of the Brain), Leningrad, 1976.

  5. Moskalenko, Yu.E., On Interconnection of Microand Macrolevels in Functional Organization of the Brain Vascular System Activity, Fiziol. Zh. SSSR 1984, vol. 70, pp. 1484–1497.

    Google Scholar 

  6. Hurn, P.D., Raysman, R.J.T., Shoukas, A.A., and Jones, M.D., Pial Microvascular Hemodynamics in Anemia, Am. J. Physiol. 1993, vol. 264, pp. H2 131–H2 135.

    Google Scholar 

  7. Levkovich, Yu.I., Mal'tsev, N.A., and Ogurtsovskiii, Yu.G., A Cine-Television Device for Study on Microcirculation and Vital Morphometry, Fiziol. Zh. SSSR 1981, vol. 67, pp. 1890–1895.

    Google Scholar 

  8. Ivanitskaya, N.F., A Technique for Study of Various Stages of Hemic Hypoxia in Rats by Sodium Nitrite Administration, Patol. Fiziol. Experim. Terap. 1976, no. 3, pp. 69–71.

    Google Scholar 

  9. Mchedlishvili, G.I., Physiological Mechanisms of Regulation of Macro-and Microcirculation in the Brain, Fiziol. Zh. SSSR 1986, vol. 72, pp. 1170–1179.

    Google Scholar 

  10. Harper, S.L., Bohlen, H.G., and Rubin, M.J., Arterial and Microvascular Contributions to Cerebral Cortical Autoregulation in Rats, Am. J. Physiol. 1984, vol. 246,no. 1, pp. H17–H24.

    Google Scholar 

  11. Osol, G. and Halpern, N., Myogenic Properties of Cerebral Blood Vessels from Normotensive and Hypertensive Rats, Am. J. Physiol. 1985, vol. 18, pp. H914–H921.

    Google Scholar 

  12. Davis, M.J., Myogenic Response Gradient in an Arteriolar Network, Am. J. Physiol. 1993, vol. 264, pp. H914–H921.

    Google Scholar 

  13. Volin, M.S., Davidson, C.A., Kaminski, P.M., Faingersh, R.P., and Mohazzab, H.K.M., Mechanisms of Oxidant-Nitric Oxide Signal Transmission in Vascular Tissue, Biokhimiya 1998, vol. 63, pp. 958–965.

    Google Scholar 

  14. Malyshev, I.Yu. and Manukhina, E.B., Stress, Adaptation, and Nitric Oxide, Biokhimiya 1998, vol. 63, pp. 992–1006.

    Google Scholar 

  15. Urazaev, A.Kh. and Zefirov, A.L., Physiological Role of Nitric Oxide, Usp. Fiziol. Nauk 1999, vol. 30,no. 1, pp. 54–72.

    Google Scholar 

  16. Eremeev, V.S., Pliss, M.G., Zakharova, A.A., Gavrilova, T.A., and Sazhin, V.L., Mechanisms of Regulation of the Arterial Pressure Value in Conscious Rats, Fiziol. Zh. RAN 1996, vol. 82, pp. 111–118.

    Google Scholar 

  17. Furgott, R.F. and Zawadzki, J.V., The Obligatory Role of Endothelial Cells in Relaxation of Arterial Smooth Muscle by Acetylcholine, Nature (London), 1980, vol. 288,no. 5789, pp. 373–376.

    Google Scholar 

  18. Blitzer, M.L., Lee, S.D., and Creager, M.A., Endothelium-Derived Nitric Oxide Mediates Hypoxic Vasodilation of Resistance Vessels in Humans, Am. J. Physiol. 1996, vol. 271, pp. H1 182–H1 185.

    Google Scholar 

  19. Vanin, A.F., Kleshchev, A.L., Mordvintsev, P.I., and Sedov, K.R., Hypotensive Activity of Nitrosyl Complexes of Non-Hemic Iron with Various Anionic Ligands, Dokl. Akad. Nauk SSSR 1985, vol. 281, pp. 742–745.

    Google Scholar 

  20. Reutov, V.P., Sorokina, E.G., Pinelis, V.G., Korshunova, G.S., Rodionov, A.A., Koshelev, V.B., Strukova, S.M., Kayushin, L.P., Braquet, P., and Komissarova, L.Kh., Compensatory-Adaptive Mechanisms in Nitrite Hypoxia in Rats, Byull. Exp. Biol. Med. 1993, vol. 116, pp. 506–508.

    Google Scholar 

  21. Stoclet, J.C., Muller, B., Andriantsitohaina, R., and Kleshchev, A., Overproduction of Nitric Oxide in Pathophysiology of Blood Vessels, Biokhimiya 1998, vol. 63, pp. 976–983.

    Google Scholar 

  22. Saito, T., Takeuchi, S., Nakajima, Y., Yukawa, N., and Osawa, M., Experimental Studies of Methemoglobinemia due to Percutaneous Absorption of Sodium Nitrite, J. Toxicol. Clin. Toxicol. 1997, vol. 35,no. 1, pp. 41–48.

    Google Scholar 

  23. Emanuel, V.L., Osmometriya v klinicheskoi laboratornoi diagnostike (Osmometry in Clinical Laboratory Diagnostics), St. Petersburg, 1995.

  24. Tatishvili, N.I., Chkheidze, Z.K., Kurashvili, R.B., Mamatsishvili, M.D., Narsiya, N.I., and Salakaya, A.N., Parameters of Hemodynamics in Patients with Acute Left-Ventricular Insufficiency Treated with Sodium Nitroprusside, Terapev. Arkhiv 1980, vol. 56,no. 4, pp. 112–115.

    Google Scholar 

  25. Murashko, V.V., Yusipova, T.A., Strutynskii, A.V., Dzhanashiya, P.Kh., Shenshina, A.M., and Sklyarova, M.A., Effect of Sodium Nitrite on Hemorheology, Microcirculation, and Blood Coagulation in Patients with Circulation Insufficiency, Terapev. Arkhiv 1984, vol. 56,no. 4, pp. 108–111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shumilova, T.E., Levkovich, Y.I. & Nozdrachev, A.D. Hemodynamics in the Microcirculation System of the Rat Cerebral Cortex in Nitrite Methemoglobinemia. Journal of Evolutionary Biochemistry and Physiology 40, 189–194 (2004). https://doi.org/10.1023/B:JOEY.0000033811.64892.19

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOEY.0000033811.64892.19

Keywords

Navigation