Skip to main content
Log in

Heterogeneity of Mechanisms of Olfactory Transduction in the Frog Rana temporaria

  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

In experiments on the isolated olfactory lining of the frog Rana temporaria, using the method of supravital fluorescent microscopy and pharmacological analysis, it has been shown that olfactory reception of camphor, unlike that of amyl alcohol, is provided not by one, but by two intracellular signaling systems: the tyrosine kinase and phosphoinositide ones. Heterogeneity of the mechanisms of olfactory reception seems to be due to their evolution associated with the appearance of novel odorants in environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Samoilov, V.O., Geterogennost' khemosensornykh sistem (Heterogeneity of Chemosensory Systems), Leningrad, 1983.

  2. Lotarev, A.N. and Samoilov, V.O., Microelectrode Study of Cells of the Frog Gustatory Gemma, Zh. Evol. Biochim. Fiziol. 1986, vol. 22, pp. 150–158.

    Google Scholar 

  3. Lotarev, A.N. and Samoilov, V.O., Peculiarities of Receptor Potential Parameters in Gustatory Cells under Action of Different Chemical Stimuli, Sensorn. Sistemy 1987, vol. 1, pp. 248–254.

    Google Scholar 

  4. Solov'ev, V.N., and Samoilov, V.O., Changes in Luminescence Spectra of Receptor Epithelium of the Frog Tongue under Action of Acetic Acid, Fiziol. Zh. SSSR 1977, vol. 63,no. 12.

  5. Samoilov, V.O., Maiorov, V.N., Petin, V.F., Kul'chitskii, V.A., and Samoilov, M.O., Structural-Functional Approach to Study of Mechanisms of Reaction of Cells of Medullary Chemosensitive Zones, Mekhanizmy reagirovaniya neirona na razdrazhayushchie vozdeistviya (Mechanisms of Reaction of Neuron on Irritating Actions), Leningrad, 1981.

  6. Samoilov, V.O. and Ponomarenko, G.N., Chemosensory Function and Metabolism of the Rat Carotid Body, Zh. Evol. Biokhim. Fiziol. 1984, vol. 24, pp. 516–521.

    Google Scholar 

  7. Samoilov, V.O., Kozhemyakin, L.A., Solov'ev, V.N., and Shmarov, D.A., Role of the cAMP System in Mechanisms of Gustatory Reception, Dokl. Akad. Nauk SSSR 1978, vol. 241.

  8. Makarchuk, N.E. and Kaluev, A.V., Obonyanie i povedenie (Smell and Behavior), Kiev, 2000.

  9. Bigdai, E.V. and Samoilov, V.O., Components of the Intracellular cAMP System Providing Reception of Amyl Alcohol, Ross. Fiziol. Zh. 2001, vol. 87, pp. 821–828.

    Google Scholar 

  10. Bigdai, E.V., Samoilov, V.O., and Komarov, A.N., Study of Participation of the Intracellular Signaling cAMP System in Olfactory Transduction of Camphor and Amyl Alcohol, Ross. Fiziol. Zh. 1999, vol. 85, pp. 412–418.

    Google Scholar 

  11. Frings, S., Lynch, J.W., and Lindemann, B., Properties of Cyclic Nucleotide-Gated Channels Mediating Olfactory Transduction. Activation, Selectivity and Blockage, J. Gen. Physiol. 1992, vol. 100, pp. 45–67.

    Google Scholar 

  12. Lowe, G., Nakamura, T., and Gold, G.H., Adenylate Cyclase Mediates Olfactory Transduction for Wide Variety of Odorants, PNAS 1989, vol. 86, pp. 5641–5645.

    Google Scholar 

  13. Dionne, V.E., New Kid on the Block: A Role for the Na/Ca Exchanger in Transduction (Commentary), J. Gen. Physiol. 1998, vol. 215, pp. 527–528.

    Google Scholar 

  14. Dubin, A.E. and Dionne, V.E., Action Potentials and Chemosensitive Conductance in the Dendrites of Olfactory Neurons Suggest New Features for Odor Transduction, J. Gen. Physiol. 1994, vol. 103,no. 2, pp. 131–201.

    Google Scholar 

  15. Lowe, G. and Gold, G.H., Contribution of the Ciliary Cyclic Nucleotide-Gated Conductance to Olfactory Transduction in the Salamander, J. Physiol. (London), 1993, vol. 462, pp. 175–196.

    Google Scholar 

  16. Boyle, A.C., Park, J.S., Hugue, T., and Bruch, R.C., Properties of Phospholipase C in Isolated Olfactory Cilia from the Channel Catfish (Ictalurus punctatus), Comp. Biochem. Physiol. 1987, vol. 88B, pp. 767–775.

    Google Scholar 

  17. Speca, D.J., Lin, D.M., Sorensen, P.W., Isacoff, E.Y., Ngai, J., and Diffmann, A.N., Functional Identification of a Goldfish Odorant Receptor, Neuron 1999, vol. 23, pp. 487–498.

    Google Scholar 

  18. Hatt, H. and Ache, W., Cyclic Nucleotide and Inositolphosphate-Gated Ion Channels in Lobster Olfactory Recepter Neurons, Proc. Nat. Acad. Sci. USA 1994, vol. 91, pp. 6264–6268.

    Google Scholar 

  19. Codiou, H., Thrower, E., Bendachou, S., and Duclohier, H., The InsP3 Receptor from Olfactory Cilia to Planar Lipid Bilayers: Conductance Properties and Recovery by ATP, J. Physiol. 1997, vol. 504, pp. 157–158.

    Google Scholar 

  20. Restrepo, D., Teeter, J.H., Honda, E., Boule, A.J., Merecek, J.E., Pristnich, G.D., and Kalinoski, D.Z., Evidence for an InsP3—Gated Channel Protein in Isolated Rat Olfactory Cilia, Am. J. Physiol. 1992, vol. 263, pp. 667–673.

    Google Scholar 

  21. Glenney, J.R., Tyrosine-Phospholylated Proteins: Mediators of Signal Transduction From the Tyrosine Kinases, Biochim. Biophys. Acta 1992, vol. 1134, pp. 113–127.

    Google Scholar 

  22. Krutetskaya, Z.I. and Lebedev, O.E., Rol'tirozinovogo fosforilirovaniya v regulyatsii aktivnosti ionnykh kanalov kletochnykh membran (Role of Tyrosine Phosphorylation in Regulation of Activity of Ion Channels of Cell Membranes), St. Petersburg, 1998.

  23. Krutetskaya, Z.I., Lebedev, O.E., and Kurilova, L.S., Mekhanizmy vnutrikletochnoi signalizatsii (Mechanisms of Intracellular Signaling), St. Petersburg, 2003.

  24. Tonks, N.K. and Neel, B.L., From Form to Function. Signaling by Protein Tyrosine Phophatases, Cell 1996, vol. 87, pp. 365–368.

    Google Scholar 

  25. Firestein, S., Shephered, G.M., and Werblin, F.S., Time Course of the Membrane Current Underlying Sensory Transduction in Salamander Receptor Neurons, J. Physiol. (London), 1990, vol. 430, pp. 135–158.

    Google Scholar 

  26. Vladimirov, Yu.A. and Dobretsov, G.E., Fluorestsentnye zondy v issledovanii biologicheskikh membran (Fluorescent Probes in Study of Biological Membranes), Moscow, 1980.

  27. Poglazov, A.F., Shibin, M.V., Skotselyas, Yu.G., Alimov, V.A., and Vladimirov, Yu.A., Fluorimetric Study of Ca2+ Release from Liposomes, Induced by Action of Phospholipase, Biofizika 1975, vol. 20, pp. 69–72.

    Google Scholar 

  28. Menini, A., Calcium Signaling and Regulation in Olfactory Neurons, Curr. Opin. Neurosci. 1999, vol. 9, pp. 419–426.

    Google Scholar 

  29. Dixon, D., Brandt, N., and Haynes, D.H., Chlorotetracycline Fluorescence is a Quantitative Measure of the Free Internal Ca2+ Concentration Achieved by Active Transport. In situ Calibration and Application to Bovine Cardiac Sarcolemma Vesicles, J. Biol. Chem. 1984, vol. 259, pp. 13 737–13 741.

    Google Scholar 

  30. Hallet, M., Schneider, A.S., and Carbone, E., Tetracycline Fluorescence as Calcium Probe for Nerve Membrane with Some Model Studies Using Erythrocyte Ghosts, J. Membr. Biol. 1972, vol. 10, pp. 31–44.

    Google Scholar 

  31. Lozarowits, J., Shaffier, L., Pace, U., Eckstein, E., Heldeman, J., Avivi, A., and Lancet, D., Olfactory Gs: A Novel Functionally Distinct Stimulatory GTP-Binding Protein, J. Cell Biol. 1989, vol. 109,no. 4, p. 53A.

    Google Scholar 

  32. Matsuzaki, O., Bakin, R.E., Cai, X., Menco, B.P.M., and Ronnet, G.V., Localization of the Olfactory Cyclic Nucleotide-Gated Channel Subunit 1 in Normal, Embryonic and Regenerating Olfactory Epithelium, J. Neurosci. 1999, vol. 94, pp. 131–140.

    Google Scholar 

  33. Zufall, F., Shepherd, G., and Barnstable, C.J., Cyclic Nucleotide Gated Channels as Regulator of CNS Development and Plasticity, Curr. Opin. Neurobiol. 1997, vol. 7, pp. 404–412.

    Google Scholar 

  34. Minor, A.V., Physiological Mechanisms of Activity of Olfactory Receptor Cells, Sensorn. Sistemy Leningrad, 1980, pp. 3–18.

  35. Lancet, D., Properties of Olfactory Cilia and cAMP-Mediated Transduction, Discuss. Neurosci. 1987, vol. 4,no. 3, pp. 68–74.

    Google Scholar 

  36. Fishmeister, R. and Hartzell, H.C., Cyclic AMP Phosphodiesterases and Ca Current in Cardiac Cells, Life Sci. 1991, vol. 48, pp. 2365–2376.

    Google Scholar 

  37. Reisert, J. and Matthews, H.R., Response Properties of Isolated Mouse Olfactory Receptor Cells, J. Physiol. 2001, vol. 530,no. 1, pp. 113–122.

    Google Scholar 

  38. Avdonin, P.V. and Tkachuk, V.A., Retseptory i vnutrikletochnyi kal'tsii (Receptors and Intracellular Calcium), Moscow, 1994.

  39. Ache, B.W. and Zhainazarov, A., Dual Second-Messenger Pathways in Olfactory Transduction, Curr. Opin. Neurobiol. 1995, vol. 5, pp. 461–466.

    Google Scholar 

  40. Okada, Y., Teeter, J.H., and Restrepo, D., Inositol 1,4,5-Triphosphate-Gated Conductance in Isolated Rat Olfactory Neurons, J. Neurophysiol. 1994, vol. 2, pp. 595–602.

    Google Scholar 

  41. Akiyama, T., Ishida, J., Nakagawa, S., Ogawa, H., Watanabi, S.I., Itoh, N., and Fukami, Y., Genistein, a Specific Inhibitor of Tyrosine-Specific Protein Kinases, J. Biol. Chem. 1987, vol. 262, pp. 5592–5595.

    Google Scholar 

  42. Fesenko, E.E., Novoselov, V.I., Myasoedov, N.F., and Sidorov, T.V., Molecular Mechanisms of Olfactory Reception. Binding of Camphor with Components of the Frog and Rat Olfactory Lining, Preprint of IBF Akad. Nauk SSSR Pushchino, 1978.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bigdai, E.V., Samoilov, V.O. Heterogeneity of Mechanisms of Olfactory Transduction in the Frog Rana temporaria . Journal of Evolutionary Biochemistry and Physiology 40, 136–143 (2004). https://doi.org/10.1023/B:JOEY.0000033804.79865.4a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOEY.0000033804.79865.4a

Keywords

Navigation