Skip to main content
Log in

The Constant of Thermal Destruction and Its Role in the Processes of Heating and Entrainment of Mass of a Material

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

A model of heating and thermal destruction of a material is suggested on the basis of analysis and generalization of computational‐experimental and literature data. The fundamental importance of the constant of thermal destruction in nonstationary processes of heating and entrainment of mass and its interrelation with the heat of material evaporation are shown. The mechanism of heat absorption in the surface layer of the destructing material, which determines the time of reaching the quasistationary mode of heating and entrainment of mass, is found. The limiting power capacity of internal and surface processes of heat absorption by a heat‐protective material is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. I. Zakharov and G. A. Frolov, High-temperature investigation of composite gradient materials in non-equilibrium air plasma, in: Proc. 3rd Int. Symp. on FGM, Switzerland, Presses Polytechniques et Universitate Romandes, CH-1015, Lausanne (1995), pp. 413–418.

  2. G. Frolov, Application of the high-temperature heating installation for gradient material obtaining, FGM-News, Tokyo, Japan, No. 27, 2–5 (1995).

  3. G. A. Frolov, V. S. Dvernyakov, V. V. Pasichnyi, and F. I. Zakharov, Heat exchange between subsonic and supersonic plasma jets, Inzh.-Fiz. Zh., 40, No. 6, 965–969 (1981).

    Google Scholar 

  4. V. N. Meshkovskii, V. V. Pasichnyi, G. A. Frolov, A. A. Donskoi, and N. V. Baritko, Helium installations for investigation of heat-accumulating materials, in: Interband Sci.-Eng. Collection of Papers "Technology" [in Russian], No. 2, Moscow (1994), pp. 67–70.

  5. Yu. V. Polezhaev and G. A. Frolov, Study of the parameters of destruction of heat-protecting materials under conditions of nonstationary heating, Inzh.-Fiz. Zh., 50, No. 2, 236–240 (1986).

    Google Scholar 

  6. Yu. V. Polezhaev and F. B. Yurevich, Thermal Protection [in Russian], E′nergiya, Moscow (1976).

  7. A. V. Luikov, Heat-Conduction Theory [in Russian], Vysshaya Shkola, Moscow (1967).

  8. G. A. Frolov, Yu. V. Polezhaev, V. V. Pasichnyi, and F. I. Zakharov, Failure parameters of heat-shielding materials in the nonstationary heating regime, Inzh.-Fiz. Zh., 40, No. 4, 608–614 (1981).

    Google Scholar 

  9. W. D. Brewer and P. C. Kassel, Flash x-ray technique for investigation of ablative material response to simulated reentry environments, Int. J. Nondestructive Testing, 3, No. 4, 375–390 (1972).

    Google Scholar 

  10. G. A. Frolov, A. A. Korol', V. V. Pasichnyi, V. Ya. Berezhetskaya, E. I. Suzdal'tsev, and V. S. Tsyganenko, Characteristic state-transformation temperatures of quartz glass-ceramic with unidirectional heating, Inzh.-Fiz. Zh., 51, No. 6, 932–940 (1986).

    Google Scholar 

  11. G. A. Frolov and I. A. Podchernyaeva, Improvement of exploitation characteristics of materials by melting of the surface layer in a plasma flow, Fiz. Khim. Obrab. Mater., No. 2, 46–53 (1997).

    Google Scholar 

  12. G. A. Frolov, V. V. Pasichnyi, E. I. Suzdal'tsev, and V. S. Tsyganenko, Measurement of temperature fields in specimens of quartz ceramic during surface ablation, Inzh.-Fiz. Zh., 57, No. 2, 313–317 (1989).

    Google Scholar 

  13. G. A. Frolov, V. V. Pasichnyi, Yu. V. Polezhaev, and A. V. Choba, Model of thermal destruction of material subjected to one-sided heating, Inzh.-Fiz. Zh., 52, No. 1, 33–37 (1987).

    Google Scholar 

  14. Yu. V. Polezhaev and G. A. Frolov, Laws governing establishment of a quartz-stationary regime of destruction in one-sided heating of materials, Inzh.-Fiz. Zh., 56, No. 4, 533–539 (1989).

    Google Scholar 

  15. Yu. V. Polezhaev and G. A. Frolov, Influence of thermal conductivity of a material on an unsteady heat removal parameter, Inzh.-Fiz. Zh., 62, No. 4, 546–551 (1992).

    Google Scholar 

  16. M. C. Adams, W. E. Powers, and S. J. Georgiev, An experimental and theoretical study of quartz ablation at the stagnation point, J. Aero/Space Sci., 27, No. 7, 535–547 (1960).

    Google Scholar 

  17. V. L. Sergeev, Non-Stationary Heat and Mass Transfer in the Region of the Stagnation Point [in Russian], Nauka i Tekhnika, Minsk (1988).

  18. G. A. Frolov, Main laws governing nonstationary mass entrainment in interaction of material with a high-temperature medium, in: Heat and Mass Transfer-MIF-92 [in Russian], Vol. 3, Minsk (1992), pp. 133–136.

    Google Scholar 

  19. G. A. Frolov, Temperature of the surface of a body undergoing destruction by a constant thermal load, Inzh.-Fiz. Zh., 53, No. 3, 420–426 (1987).

    Google Scholar 

  20. Yu. V. Polezhaev and G. A. Frolov, Transient regime in the thermal and erosional destruction of materials, Inzh.-Fiz. Zh., 52, No. 3, 357–362 (1987).

    Google Scholar 

  21. Yu. V. Polezhaev and V. I. Panchenko, Main laws governing the kinetics of erosional destruction of materials, Inzh.-Fiz. Zh., 52, No. 5, 709–716 (1987).

    Google Scholar 

  22. R. I. Harrach, Estimates on the ignition of high-explosive laser pulses, J. Appl. Phys., 47, No. 6, 2473–2482 (1976).

    Google Scholar 

  23. G. A. Frolov, Effect of the type of heating on the rate of destruction of materials, Inzh.-Fiz. Zh., 50, No. 4, 629–635 (1986).

    Google Scholar 

  24. G. A. Frolov, Influence of different factors on evaporation of material in a high-temperature gas flow, in: Proc. III Minsk Int. Forum "Heat and Mass Transfer-MIF-96" [in Russian], 20-24 May 1996, Minsk, Vol. 3, Minsk (1996), pp. 55–59.

    Google Scholar 

  25. F. B. Yurevich, Behavior of polymer materials in a plasma jet, in: Heat and Mass Transfer and Thermal Properties of Materials [in Russian], ITMO AN BSSR, Minsk (1969), pp. 145–154.

  26. G. A. Frolov, V. V. Pasichnyi, Yu. V. Polezhaev, A. A. Frolov, and A. V. Choba, Evaluating the fracture energy of a material from its heat content, Inzh.-Fiz. Zh., 50, No. 5, 709–718 (1986).

    Google Scholar 

  27. V. A. Kirillin and A. E. Sheindlin, Study of Thermodynamic Properties of Substances, [in Russian], Gose′nergizdat, Moscow-Leningrad (1963).

  28. N. B. Vargaftik, Handbook on Thermophysical Properties of Gases and Liquids [in Russian], Nauka, Moscow (1972).

  29. 29. N. K. Kikoin (Ed.), Tables of Physical Quantities: Handbook [in Russian], Atomizdat, Moscow (1976).

  30. 30. A. P. Zefirov (Ed.), Thermodynamic Properties of Inorganic Substances [in Russian], Atomizdat, Moscow (1965).

  31. Thermodynamic Properties of Individual Substances: Handbook [in Russian], in 4 vols., Nauka, Moscow (1979-1982).

  32. 32. I. V. Kudryavtsev (Ed.), Materials in Mechanical Engineering [in Russian], Vol. 1, Mashinostroenie, Moscow (1969).

  33. Encyclopedia of Inorganic Materials [in Russian], in 2 vols., USE ′, Kiev (1977).

  34. V. A. Golovin and E′. Kh. Ul'yanova, Properties of Noble Metals and Alloys [in Russian], Metallurgiya, Moscow (1964).

  35. International Critical Tables of Numerical Data, Physics, Chemistry and Technology, Vol. 1, 2, USA, 1926-1933.

  36. G. A. Frolov, Self-organization of heating of materials in heat destruction of its surface, in: Proc. Int. Conf. "Science for Materials in the Frontier of Centuries: Advantages and Challenges", Kiev, 2002, Vol. 2 (2002), pp. 649–650.

    Google Scholar 

  37. B. I. Medovar, V. L. Shevtsov, G. S. Marinskii, V. F. Demchenko, and V. I. Makhnenko, Thermal Processes in Slag Electric Remelting [in Russian], Naukova Dumka, Kiev (1978).

  38. G. A. Frolov, Yu. V. Polezhaev, and V. V. Pasichnyi, Effect of internal and surface processes of heat absorption in the heating and destruction of a material, Inzh.-Fiz. Zh., 53, No. 4, 533–540 (1987).

    Google Scholar 

  39. G. A. Frolov, Yu. V. Polezhaev, and V. V. Pasichnyi, Rate of material destruction in one-sided heating, Inzh.-Fiz. Zh., 52, No. 4, 533–540 (1987).

    Google Scholar 

  40. J. H. Landell and R. R. Dickey, Rate of destruction of materials in one-sided heating, Raketn. Tekh. Kosmonavt., 11, No. 2, 111–119 (1973).

    Google Scholar 

  41. V. V. Kuzmich, Study of destruction of glass-plastics based on silico-fiber and epoxy-binder fillers in quasi-stationary heating, in: Special Features of Heat and Mass Transfer Processes [in Russian], ITMO AN BSSR, Minsk (1979), pp. 194–197.

  42. Yu. V. Polezhaev, and G. A. Frolov, Laws of thermal disintegration in the interaction of a body with a highspeed gas flow, Inzh.-Fiz. Zh., 57, No. 3, 357–363 (1989).

    Google Scholar 

  43. V. V. Gorskii and S. T. Surzhikov, Fracture characteristics of glass-graphite bodies in a partially ionized air flow, Inzh.-Fiz. Zh., 42, No. 4, 640–645 (1982).

    Google Scholar 

  44. Yu. V. Polezhaev (K. V. Frolov Ed.), in: Mechanical Engineering: Encyclopedia [in Russian], Vols. 1-2, Mashinostroenie, Moscow (2001), pp. 463–467.

  45. G. A. Frolov, Limit power consumption of major factors of heat absorption at thermal destruction of the material, in: Proc. 2nd Int. Conf. "Materials and Coatings for Extreme Performances: Investigation, Applications, Ecologically Safe Technologies for Their Production and Utilization," Ukraine, Crimea, Kiev (2002), pp. 17–18.

  46. V. E. Abaltusov, Study of the characteristics of destruction of glass-graphite bodies in a partially ionized air flow, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Tekh. Nauk, No. 10, Issue 2, 10–13 (1985).

  47. V. S. Avduevskii and G. A. Glebov, Heat exchange in the neighborhood of the stagnation point on a permeable surface, Inzh.-Fiz. Zh., 18, No. 5, 777–782 (1970).

    Google Scholar 

  48. N. A. Anfimov and V. V. Al'tov, Heat transfer, friction, and mass transfer in a laminar multicomponent boundary layer with injection of foreign gases, Teplofiz. Vys. Temp., 3, No. 3, 409–420 (1965).

    Google Scholar 

  49. V. P. Mugalev, Effect of injection of different gases on heat transfer near the front critical point of a blunt body, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1, 175–180 (1965).

    Google Scholar 

  50. R. N. Feldhuhm, Heat transfer from a turbulent boundary layer on porous hemisphere, AIAA Paper, No. 119 (1976).

  51. Yu. V. Polezhaev, Methods and Means of Gasdynamic Tests of Flying Vehicles [in Russian], MAI, Moscow (1983).

  52. A. P. Vinogradov, Geokhimiya, No. 11, 1283–1286 (1971).

  53. G. V. Voitkevich, Origin and Chemical Evolution of the Earth [in Russian], Nauka, Moscow (1973).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frolov, G.A. The Constant of Thermal Destruction and Its Role in the Processes of Heating and Entrainment of Mass of a Material. Journal of Engineering Physics and Thermophysics 77, 489–520 (2004). https://doi.org/10.1023/B:JOEP.0000036495.02295.81

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOEP.0000036495.02295.81

Keywords

Navigation