Skip to main content
Log in

Erosion of a Copper Cathode in a Nonstationary Arc Spot. III. Generalization of Experimental Results and Modeling of the Influence of Velocity on Erosion

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

An extensive amount of experimental material on investigation of the dependence of the erosion of a copper cathode on the main operating parameters — the current, the electrode temperature, and the magnetic field — has been generalized with the use of the thermal macroscopic erosion model proposed earlier. It has been shown that the basic regularities of the erosion, modeled in such a manner, are confirmed experimentally with a satisfactory correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. M. Esipchuk, A. Marotta, and L. I. Sharakhovskii, Erosion of a copper cathode in a nonstationary arc spot. I. Experimental investigation, Inzh.-Fiz. Zh., 77,No. 2, 106–111 (2004).

    Google Scholar 

  2. L. I. Sharakhovskii, A. M. Esipchuk, and A. Marotta, Erosion of a copper cathode in a nonstationary arc spot. II. Determination of the energy parameters of the arc spot by the thermophysical method, Inzh.-Fiz. Zh., 77,No. 2, 112–117 (2004).

    Google Scholar 

  3. A. E. Guile and A. H. Hitchcock, The effect of rotating arc velocity on copper cathode erosion, J. Phys. D: Appl. Phys., 7, 597–606 (1974).

    Google Scholar 

  4. A. E. Guile and A. H. Hitchcock, Effect of transverse magnetic field on erosion rate of cathodes of rotating arcs, Proc. IEE, 128,No. 2, 117–122 (1981).

    Google Scholar 

  5. L. I. Sharakhovskii (Sharakhovsky), A. Marotta, and V. N. Borisyuk, A theoretical and experimental investigation of copper electrode erosion in electric arc heaters. III: Experimental validation and prediction of erosion, J. Phys. D: Appl. Phys., 30, 2421–2430 (1997).

    Google Scholar 

  6. A. M. Esipchuk, A. Marotta, and L. I. Sharakhovskii, Velocity of electric-arc motion between coaxial electrodes in a magnetic field, Inzh.-Fiz. Zh., 73,No. 6, 1255–1260 (2000).

    Google Scholar 

  7. A. M. Esipchuk, A. Marotta, and L. I. Sharakhovskii, Experimental investigation of the current density and the heat-flux density in the cathode arc spot, Inzh.-Fiz. Zh., 74,No. 3, 198–206 (2001).

    Google Scholar 

  8. A. M. Esipchuk (Essiptchouk), A. Marotta, L. I. Sharakhovskii (Sharakhovsky), and D. A. Bublievsky, Experimental investigation of the cathode spot parameters in a magnetically driven arc, in: P. Fauchais (ed.), Progress of Plasma Processing of Materials 2003, Begell House, New York (2003), pp. 203–209.

    Google Scholar 

  9. D. A. Bublievsky, A. Marotta, A. M. Esipchuk (Essiptchouk), L. I. Sharakhovskii (Sharakhovsky), and E. V. A. da Silva, Study of the magnetically driven arc spot velocity using copper cathode spectral line intensity, in: Proc. 4th Int. Conf. on Plasma Physics and Plasma Technology (PPPT4), Minsk, Belarus, September 16–19, 2003, Institute of Molecular and Atomic Physics NANB (2003), pp. 151–154.

  10. R. N. Szente, R. J. Munz, and M. G. Drouet, The influence of the cathode surface on the movement of a magnetically driven electric arc, J. Phys. D: Appl. Phys., 23, 1193–1200 (1990).

    Google Scholar 

  11. R. N. Szente, R. J. Munz, and M. G. Drouet, Effect of the arc velocity on the cathode erosion rate in argon-nitrogen mixtures, J. Phys. D: Appl. Phys., 20, 754–756 (1987).

    Google Scholar 

  12. R. N. Szente, R. J. Munz, and M. G. Drouet, Arc velocity and cathode erosion rate in a magnetically driven arc burning in nitrogen, J. Phys. D: Appl. Phys., 21, 909–913 (1988).

    Google Scholar 

  13. A. S. An'shakov, A. N. Timoshevskii, and E. K. Urbakh, Erosion of a copper cylindrical cathode in air, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Tekh. Nauk, 2,No. 7, 65–68 (1988).

    Google Scholar 

  14. J. E. Harry, The measurement of the erosion rate at the electrodes of an arc rotated by a transverse magnetic field, J. Appl. Phys., 40,No. 1, 265–270 (1969).

    Google Scholar 

  15. Y. Gao, R. J. Munz, and P. G. Tsantrizos, Characteristics and electrode erosion rates of a d.c. plasma torch operating with TiCl4 plasma gas, Plasma Chem. Plasma Process, 14,No. 1, 73–85 (1994).

    Google Scholar 

  16. L. I. Sharakhovskii (Sharakhovsky) and N. A. Kostin, Vortex flows in electric arc heaters, Heat Transfer—Soviet Research, 16,No. 5, 126–140 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marotta, A., Sharakhovskii, L.I. & Esipchuk, A.M. Erosion of a Copper Cathode in a Nonstationary Arc Spot. III. Generalization of Experimental Results and Modeling of the Influence of Velocity on Erosion. Journal of Engineering Physics and Thermophysics 77, 392–398 (2004). https://doi.org/10.1023/B:JOEP.0000028520.32317.3b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOEP.0000028520.32317.3b

Keywords

Navigation