Skip to main content
Log in

Erosion of a Copper Cathode in a Nonstationary Arc Spot. I. Experimental Investigation

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

A study has been made of the dependence of the erosion of a copper cathode of an electric‐arc heater on the basic operating parameters: the arc current, the velocity of movement of an arc spot, and the temperature of the electrode surface. The experiments were conducted in a coaxial electric‐arc heater with a magnetic movement of the arc in an air medium for an arc current of 95–480 A and a magnetic field of 0.005–0.417 T. The duration of the experiment, the axial velocity of a plasma‐forming gas, and the flow rate of a cooling water were held constant. It has been shown that there are two different erosion regimes: the microerosion regime characterized by a weak dependence on the current and the macroerosion regime with a strong dependence on the current; the transition from one regime to the other is realized upon the attainment of the critical value of the current, dependent on the magnetic field and the thermal regime of the electrode. The existence of a velocity interval in which the specific erosion is minimum has been shown, which confirms the predictions of the earlier thermal model of erosion of cold electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. I. Sharakhovskii (Sharakhovsky), A. Marotta, and V. N. Borisyuk, A theoretical and experimental investigation of copper electrode erosion in electric arc heaters. II: Experimental determination of arc spot parameters, J. Phys. D: Appl. Phys., 30, 2018–2025 (1997).

    Google Scholar 

  2. L. I. Sharakhovskii (Sharakhovsky), A. Marotta, and V. N. Borisyuk, A theoretical and experimental investigation of copper electrode erosion in electric arc heaters. III: Experimental validation and prediction of erosion, J. Phys. D: Appl. Phys., 30, 2421–2430 (1997).

    Google Scholar 

  3. A. M. Esipchuk, A. Marotta, and L. I. Sharakhovskii, Magnetic-field effect on heat transfer within a cathode arc spot, Inzh.-Fiz. Zh., 73,No. 6, 1245–12554 (2000).

    Google Scholar 

  4. A. M. Esipchuk, A. Marotta, and L. I. Sharakhovskii, Experimental investigation of the current density and the heat-flux density in the cathode arc spot, Inzh.-Fiz. Zh., 74,No. 3, 198–206 (2001).

    Google Scholar 

  5. A. V. Luikov, Heat-Conduction Theory [in Russian], Vysshaya Shkola, Minsk (1967).

    Google Scholar 

  6. E. P. Trofimov, Problem of a nonstationary temperature field of an unbounded hollow cylinder, Inzh.-Fiz. Zh., 3,No. 10, 47–53 (1960).

    Google Scholar 

  7. A. Marotta and L. I. Sharakhovskii (Sharakhovsky), Theoretical and experimental investigation of copper electrode erosion in electric arc heaters. I: The thermophysical model, J. Phys. D: Appl. Phys., 29, 2395–2403 (1996).

    Google Scholar 

  8. A. Marotta, L. I. Sharakhovskii, and V. N. Borisyuk, Heat transfer and plasmatron electrode erosion, Inzh.-Fiz. Zh., 70,No. 4, 551–559 (1997).

    Google Scholar 

  9. A. Marotta, L. I. Sharakhovskii, and A. M. Esipchuk, Step model of erosion of electrodes. I. Application to arc spots on the cathodes of electric-arc heaters, Inzh.-Fiz. Zh., 76,No. 2, 116–122 (2003).

    Google Scholar 

  10. M. Zhukov, I. Zasypkin, A. Timoshevskii, A. Mikhailov, and G. Desyatov, Low-Temperature Plasma: Electric-Arc Heaters [in Russian], Vol. 17, Nauka, Novosibirsk (1999).

    Google Scholar 

  11. A. M. Esipchuk, L. I. Sharakhovskii, and A. Marotta, Velocity of electric-arc motion between coaxial electrodes in a magnetic field, Inzh.-Fiz. Zh., 73,No. 6, 1255–1260 (2000).

    Google Scholar 

  12. R. N. Szente, R. J. Munz, and M. G. Drouet, Effect of the arc velocity on the cathode erosion rate in argon-nitrogen mixtures, J. Phys. D: Appl. Phys., 20, 754–756 (1987).

    Google Scholar 

  13. R. N. Szente, R. J. Munz, and M. G. Drouet, Arc velocity and cathode erosion rate in a magnetically driven arc burning in nitrogen, J. Phys. D: Appl. Phys., 21, 909–913 (1988).

    Google Scholar 

  14. J. E. Harry, The measurement of the erosion rate at the electrodes of an arc rotated by a transverse magnetic field, J. Appl. Phys., 40,No. 1, 265–270 (1969).

    Google Scholar 

  15. A. S. An'shakov, A. N. Timoshevskii, and E. K. Urbakh, Erosion of a copper cylindrical cathode in air, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Tekh. Nauk, 2,No. 7, 65–68 (1988).

    Google Scholar 

  16. Y. Gao, R. J. Munz, and P. G. Tsantrizos, Characteristics and electrode erosion rates of a D.C. plasma torch operating with TiCl4 plasma gas, Plasma Chem. Plasma Process., 14,No. 1, 73–85 (1994).

    Google Scholar 

  17. A. S. Shaboltas and O. I. Yas'ko, Mechanism of heat transfer in the near-cathode region of a moving high-current electric arc, Teplofiz. Vys. Temp., 9,No. 1, 110–115 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esipchuk, A.M., Marotta, A. & Sharakhovskii, L.I. Erosion of a Copper Cathode in a Nonstationary Arc Spot. I. Experimental Investigation. Journal of Engineering Physics and Thermophysics 77, 377–383 (2004). https://doi.org/10.1023/B:JOEP.0000028518.06494.f4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOEP.0000028518.06494.f4

Keywords

Navigation