Skip to main content
Log in

Heat Exchange in a Tube Filled with Granular Bed

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

Results of modeling of the process of heat transfer from a circular tube filled with granular bed with boundary conditions of the first, second, and third kind have been presented. The physical characteristics of the wall zone and the relative value of its thermal resistance have been determined based on an analysis of experimental data on the nonstationary heat exchange of the unblown granular bed. Recommendations on calculation of the heat exchange at elevated temperatures have been given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. É. Aérov, O. M. Todes, and D. A. Narinskii, Apparatuses with a Stationary Granular Bed [in Russian], Khimiya, Leningrad (1979).

    Google Scholar 

  2. V. A. Mukhin and N. N. Smirnova, Study of Heat and Mass Transfer Processes in Filtration in Porous Media [in Russian], Preprint No. 26–78 of the Institute of Thermal Physics, Siberian Branch of the USSR Academy of Sciences, Novosibirsk (1978).

    Google Scholar 

  3. R. A. Dekhtyar', D. F. Sikovskii, A. V. Gorin, and V. A. Mukhin, Heat Transfer in a Granular Bed at Moderate Reynolds Numbers, Teplofiz. Vys. Temp., 40,No. 5, 748–755 (2002).

    Google Scholar 

  4. A. V. Luikov, Heat-Conduction Theory [in Russian], Vysshaya Shkola, Moscow (1967).

    Google Scholar 

  5. N. V. Antonishin, L. E. Simchenko, and L. V. Gorbachev, Features of Nonstationary Heat Conduction of Heterogeneous Systems under Highly Intense Short-Duration Thermal Effects, in: Heat and Mass Transfer [in Russian], Collection of Sci. Papers, Nauka i Tekhnika, Minsk (1968), pp. 3–23.

    Google Scholar 

  6. V. A. Borodulya, Yu. S. Teplitskii, I. I. Markevich, and T. P. Eremenko, Modeling of Unsteady Heat Transfer in Disperse Systems, Inzh.-Fiz. Zh., 57,No. 3, 412–419 (1989).

    Google Scholar 

  7. V. A. Borodulya, V. L. Ganzha, and V. I. Kovenskii, Hydrodynamics and Heat Transfer in a Fluidized Bed under Pressure [in Russian], Nauka i Tekhnika, Minsk (1982).

    Google Scholar 

  8. N. I. Gel'perin and V. G. Ainshtein, in: I. F. Davidson and D. Harrison (Eds.), Fluidization [in Russian], Moscow, (1974), pp. 414–474.

  9. J. S. M. Botterill, Fluid-Bed Heat Transfer: Gas-Fluidized Bed Behavior and Its Influence on Bed Thermal Properties [Russian translation], Énergiya, Moscow (1980).

    Google Scholar 

  10. D. A. Narinskii, A. M. Kagan, I. I. Gel'perin, and M. É. Aérov, Near-Wall Coefficient of Heat Transfer in a Tube with a Stationary Granular Bed, Teor. Osnovy Khim. Tekhnol., 13,No. 2, 287–289 (1979).

    Google Scholar 

  11. V. A. Borodulya, V. L. Ganzha, Yu. S. Teplitskii, and Yu. G. Epanov, Heat Transfer in Fluidized Beds, Inzh.-Fiz. Zh., 49,No. 4, 621–626 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teplitskii, Y.S. Heat Exchange in a Tube Filled with Granular Bed. Journal of Engineering Physics and Thermophysics 77, 103–110 (2004). https://doi.org/10.1023/B:JOEP.0000020723.86534.47

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOEP.0000020723.86534.47

Keywords

Navigation