Skip to main content
Log in

Control of the Parameters of an Exhaust Jet by Increasing the Eddy Viscosity at the Nozzle Edge

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

We studied the possibility of changing the parameters of the exhaust wake in the far field of the jet behind a large passenger aircraft (aerobus) by increasing the coefficient of eddy viscosity at the edge of the nozzle of a double‐flow engine with a high double‐flow ratio (>10) without mixing with the aid of artificial turbulizers created in the outer and inner ducts. Within the model of turbulence with one differential equation for the coefficient of viscosity, we obtained numerical solutions for velocity, temperature, concentrations of vapor and condensate, and the coefficient of viscosity for different variants which disclose the essence of a physico‐mathematical model of the phenomenon and predict possible changes of the parameters of the exhaust jet with artificial increase of viscosity in the initial section and the jet volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Proc. Int. Colloq. "Impact of Aircraft Emissions upon the Atmosphere", 15-18 October 1996, Paris, Vol. I, pp. 1-378; Vol. II, pp. 379-667 (1996).

  2. U. Schumann (ed.), Pollutants from Air Traffic(Results of Atmospheric Research in 1992-1997), German Aerospace Center, Oberpfafenhofen (1997).

    Google Scholar 

  3. O. B. Popovicheva, A. M. Starik, and O. N. Favorskii, Problems of the effect of aviation on gas and aerosol composition of the atmosphere, Izv. Ross. Akad. Nauk, Fiz. Atmos. Okeana, 36, No. 2, 163-176 (2000).

    Google Scholar 

  4. A. N. Kucherov, Blooming channel in contrails, Opt. Atmos. Okeana, 13, No. 5, 521-528 (2000).

    Google Scholar 

  5. L. S. G. Kovasznay, Structure of the turbulent boundary layer, Phys. Fluids, 10, No. 9, Pt. 2, 25-30 (1967).

    Google Scholar 

  6. V. M. Nee and L. S. G. Kovasznay, Simple phenomenological theory of turbulent shear flows, Phys. Fluids, 12, No. 3, 473-484 (1969).

    Google Scholar 

  7. A. N. Sekundov, Application of the differential equation for eddy viscosity to the analysis of plane non-selfsimilar flows, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 114-127 (1971).

  8. V. I. Kopchenov, Method of numerical solution of the problem on propagation of a supersonic underexpanded turbulent jet in a co-current supersonic flow, Uch. Zap. TsAGI, 11, No. 4, 37-44 (1980).

    Google Scholar 

  9. N. F. Borisov, Numerical calculation of nonisobaric supersonic viscous jets issuing into co-current supersonic flows, Uch. Zap. TsAGI, 16, No. 1, 15-26 (1985).

    Google Scholar 

  10. P. Bradshaw, B. E. Launder, and J. Lumley, Collaborative Testing of Turbulence Models, AIAA Paper No. 910215 (1991).

  11. A. N. Gulyaev, V. E. Kozlov, and A. N. Sekundov, Development of a universal one-parameter model for eddy viscosity, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 4, 69-81 (1993).

  12. G. N. Abramovich, T. A. Girshovich, S. Yu. Krasheninnikov, et al., Theory of Turbulent Jets[in Russian], Nauka, Moscow (1984).

    Google Scholar 

  13. A. N. Kucherov, A. P. Markelov, A. A. Semenov, and A. V. Shustov, Initial contrail parameters dependence on flight conditions and parameters of exhaust gas, in: Proc. Vth Int. Symp. "New Aviation Technology of the XXI Century," 17-22 August 1999, Zhukovsky, Russia, Section 1.1 (1999), pp. 382-389.

  14. A. N. Kucherov and G. V. Molleson, Condensation wake in a nonisobaric jet, Inzh.-Fiz. Zh., 74, No. 5, 29-32 (2001).

    Google Scholar 

  15. A. V. Kashevarov and A. N. Kucherov, Strong effect of the shape of distributions of the parameters at the edge of the nozzle on the characteristics of the condensation wake, Uch. Zap. TsAGI, 33, Nos. 1-2, 100-110 (2002).

    Google Scholar 

  16. A. V. Kashevarov, A. N. Kucherov, and G. V. Molleson, Dependence of optical characteristics of the condensation wake on the laws of distribution of parameters of a nonisobaric exhaust at the edge of the nozzle, Opt. Atmos. Okeana, 14, No. 5, 418-423 (2001).

    Google Scholar 

  17. V. A. Ruskol and U. G. Pirumov, Isobaric turbulent reacting jet issuing into the co-current flow, Dokl. Akad. Nauk SSSR, 236, No. 2, 321-324 (1977).

    Google Scholar 

  18. V. S. Avduevskii, D. A. Ashratov, A. V. Ivanov, and U. G. Pirumov, Supersonic Nonisobaric Gas Jets[in Russian], Mashinostroenie, Moscow (1985).

    Google Scholar 

  19. V. S. Avduevskii, D. A. Ashratov, A. V. Ivanov, and U. G. Pirumov, Gas Dynamics of Supersonic Nonisobaric Jets [in Russian], Mashinostroenie, Moscow (1989).

    Google Scholar 

  20. S. S. Pannu and N. H. Johannesen, Structure of jets from notched nozzles, J. Fluid Mech., 74, Pt. 3, 515-528 (1976).

    Google Scholar 

  21. Yu. G. Zhulev, N. T. Mallabaev, and A. G. Nalivaiko, Study of the possibility of enhancing smearing of cocurrent jets, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 5, 182-190 (1998).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kucherov, A.N. Control of the Parameters of an Exhaust Jet by Increasing the Eddy Viscosity at the Nozzle Edge. Journal of Engineering Physics and Thermophysics 76, 1227–1237 (2003). https://doi.org/10.1023/B:JOEP.0000012023.29399.52

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOEP.0000012023.29399.52

Keywords

Navigation