Skip to main content
Log in

A Resistant Predator and Its Toxic Prey: Persistence of Newt Toxin Leads to Poisonous (Not Venomous) Snakes

Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The Common Garter Snake (Thamnophis sirtalis) preys upon the Rough-skinned Newt (Taricha granulosa), which contains the neurotoxin tetrodotoxin (TTX) in the skin. TTX is toxic, large quantities are present in a newt, and highly resistant snakes have the ability to ingest multiple newts; subsequently snakes harbor significant amounts of active toxin in their own tissues after consuming a newt. Snakes harbor TTX in the liver for 1 mo or more after consuming just one newt, and at least 7 wk after consuming a diet of newts. Three weeks after eating one newt, snakes contained an average of 42 μg of TTX in the liver. This amount could severely incapacitate or kill avian predators, and mammalian predators may be negatively affected as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Akizawa, T., Yasuhara, T., Kano, R., and Nakajima, T. 1985. Novel polyhydroxylated car-diac steroids in the nuchal glands of the snake, Rhabdophis tigrinus. Biomed. Res. 6:437–441.

    Google Scholar 

  • Arnold, S.J. and Bennett, A. F. 1984. Behavioural variation in natural populations. III: Antipredator displays in the garter snake Thamnophis radix. Anim. Behav. 32:1108–1118.

    Google Scholar 

  • Brodie, E. D., III, and Brodie, E. D., JR. 1990. Tetrodotoxin resistance in garter snakes: An evolu-tionary response of predators to dangerous prey. Evolution 44:651–659.

    Google Scholar 

  • Brodie, E. D., III, and Brodie, E. D., JR. 1999a. The cost of exploiting poisonous prey: Evolutionary tradeoffs in a predator-prey arms race. Evolution 53:626–631.

    Google Scholar 

  • Brodie, E. D., III, and Brodie, E. D., JR. 1999b. Predator-prey arms races and dangerous prey. Bioscience 49:557–568.

    Google Scholar 

  • Brodie, E. D., III, and Janzen, F. J. 1995. Experimental studies of coral snake mimicry: Generalized avoidance of ringed snake patterns by free-ranging avian predators. Funct. Ecol. 9:186–190.

    Google Scholar 

  • Brodie, E. D., JR. 1968. Investigations on the skin toxin of the adult rough-skinned newt, Tar i cha granulosa. Copeia 1968:307–313.

    Google Scholar 

  • Brodie, E. D., JR. and Ducey, P. K. 1991. Antipredator skin secretions of some tropical salamanders (Bolitoglossa) are toxic to snake predators. Biotropica 23:58–62.

    Google Scholar 

  • Brodie, E. D., JR., Formanowicz, D.R., JR., and BRODIE, E. D., III. 1991. Predator avoidance and antipredator mechanisms: Distinct pathways to survival. Ethol. Ecol. Evol. 3:73–77.

    Google Scholar 

  • Brodie, E. D., JR., Ridenhour, B.J., and Brodie, E. D., III. 2002. The evolutionary response of predators to dangerous prey: Hotspots and coldspots in the geographic mosaic of coevolution between garter snakes and newts. Evolution 56:2067–2082.

    Google Scholar 

  • Brodie, E. D., JR. and Tumbarello, M. S. 1978. The antipredator functions of Dendrobates auratus (Amphibia, Anura, Dendrobatidae) skin secretion in regard to a snake predator (Thamnophis).J. Herpetol. 12:264–265.

    Google Scholar 

  • Brower, L.P., Pough, F. H., and Meck, H. R. 1970. Theoretical investigations of automimicry, I. Single trial learning. Proc. Natl. Acad. Sci. U.S.A. 66:1059–1066.

    Google Scholar 

  • Cembella, A.D. and Desbiens, M. 1994. Fate of paralytic shellfish toxins in the American lobster Homarus americanus. J. Shellfish Res. 13:302.

    Google Scholar 

  • Cuthill, I.C. and Bennett, A. T. D. 1993. Mimicry and the eye of the beholder. Proc. R. Soc. Lond. Ser. B 253:203–204.

    Google Scholar 

  • Daly, J.W., Garaffo, H.M., Hall, G.S.E., and Cover, J. F. 1997. Absence of skin alkaloids in captive-raised Madagascan mantelline frogs (Mantella) and sequestration of dietary alkaloids. Toxicon 35:1131–1135.

    Google Scholar 

  • Duellman, W.E., and Trueb, L. 1986. Biology of the Amphibians. McGraw-Hill Book, New York.

    Google Scholar 

  • Fisher, R. A. 1930. The Genetical Theory of Natural Selection. Oxford University Press, Oxford.

    Google Scholar 

  • Fitch, H. S. 1965. An ecological study of the garter snake, Thamnophis sirtalis. Univ. Kans. Publ. Mus. Nat. Hist. 15:493–564.

    Google Scholar 

  • Geffeney, S., Ruben, P.C., Brodie, E. D., JR., and Brodie, E. D., III. 2002. Mechanisms of adaptation in a predator-prey arms race: TTX resistant sodium channels. Science 297:1336–1339.

    Google Scholar 

  • Gittleman, J.L. and Harvey, P. H. 1980. Why are distasteful prey not cryptic? Nature (Lond.) 286:149–150.

    Google Scholar 

  • Gittleman, J.L., Harvey, P. H., and Greenwood, P. J. 1980. The evolution of conspicuous col-oration: Some experiments in bad taste. Anim. Behav. 28:897–899.

    Google Scholar 

  • Hancock, J. and Kushlan, J. 1984. The Herons Handbook. Nicholas Enterprises/London Editions, London.

  • Hanifin, C.T., Brodie, E. D., III, and Brodie, E. D., JR. 2002. Tetrodotoxin levels of the rough-skin newt, Taricha granulosa, increase in long-term captivity. Toxicon 40:1149–1153.

    Google Scholar 

  • Hanifin, C.T., Brodie, E. D., III, and Brodie, E. D., JR. 2003. Tetrodotoxin levels in the eggs of the rough-skin newt, Taricha granulosa, are correlated with female toxicity. J. Chem. Ecol. 29:1701–1711.

    Google Scholar 

  • Hanifin, C.T., Brodie, E. D., III, and Brodie, E. D., JR. 2004. A predictive model to estimate total skin tetrodotoxin in the newt Taricha granulosa. Toxicon 43:243–249.

    Google Scholar 

  • Hanifin, C.T., Yotsu-Yamashita, M., Yasumoto, T., Brodie, E. D., III, and Brodie, E. D., JR. 1999. Toxicity of dangerous prey: Variation of tetrodotoxin levels within and among populations of the newt Taricha granulosa. J. Chem. Ecol. 25:2161–2175.

    Google Scholar 

  • Hensel, J.L., JR. and Brodie, E.D. JR. 1976. An experimental study of aposematic coloration in the salamander Plethodon jordani. Copeia 1976:59–65.

    Google Scholar 

  • Hunt, S., Cuthill, I.C., Swaddle, J.P., and Bennett, A. T. D. 1997. Ultraviolet vision and band-colour preferences in female zebra finches, Taeniopygia guttata. Anim. Behav. 54:1383–1392.

    Google Scholar 

  • Ishihara, F. 1918. —¨ Uber die physiologishen wirkungen des fugutoxins. Mittheil. Med. Fak. Tokyo Univ. 20:375–426.

    Google Scholar 

  • Kao, C. Y. 1966. Tetrodotoxin, saxitoxin, and their significance in the study of excitation phenomena. Pharmacol. Rev. 18:997–1049.

    Google Scholar 

  • Kawabata, T. 1978. Assay method for tetrodotoxin, pp. 223–241, in Food Hygiene Examination Manual, Vol. II. Environmental Health Bureau, Japan Food Hygiene Association, Tokyo, Japan.

    Google Scholar 

  • Kawasaki, H., Nagata, T., and Kanoh, S. 1973. An experience on the biological assay of the toxicity of imported Fugu (tetrodon). Shokuhin Eiseigaku Zasshi 14(2):186–190.

    Google Scholar 

  • Kodama, M., Noguchi, T., Maruyama, J., Ogata, T., and Hashimoto, K. 1983. Release of tetrodotoxin and paralytic shellfish poison from puffer liver by RNase. J. Biochem. 93:243–247.

    Google Scholar 

  • Maddocks, S. A., Church, S.C., and Cuthill, I. C. 2001. The effects of the light environment on prey choice by zebra finches. J. Exp. Biol. 204:2509–2515.

    Google Scholar 

  • Medinsky, M.A. and Klaassen, C. D. 1996. Toxicokinetics, pp. 187–198, in C. D. Klaassen (ed.). Casarett and Doull's Toxicology: The Basic Science of Poisons. McGraw-Hill, New York, NY.

    Google Scholar 

  • Mobley, J.A. and Stidham, T. A. 2000. Great Horned Owl death from predation of a toxic California newt. Wilson Bull. 112:563–564.

    Google Scholar 

  • Mori, A., Layne, D., and Burghardt, G. M. 1996. Description and preliminary analysis of an-tipredator behavior of Rhabdophis tigrinus tigrinus, a colubrid snake with nuchal glands. Jpn. J. Herpetol. 16:94–107.

    Google Scholar 

  • Mosher, H. S., Fuhrman, F. A., Buchwald, H. D., and Fischer, H. G. 1964. Tarichatoxin-tetrodotoxin: A potent neurotoxin. Science 144:1100–1110.

    Google Scholar 

  • Myers, C.W., Daly, J.W., and Malkin, B. 1978. A dangerously toxic new frog (Phyllobates) used by Ember´ a Indians of western Columbia, with discussion of blowgun fabrication and dart poisoning. Bull. Am. Mus. Nat. Hist. 161:307–365.

    Google Scholar 

  • Nagashima, Y., Toyoda, M., Hasobe, M., Shimakura, K., and Shiomi, K. 2003. In vitro accumu-lation of tetrodotoxin in pufferfish liver tissue slices. Toxicon 41:569–574.

    Google Scholar 

  • Narahasi, T., Moore, J.W., and Poston, R. N. 1967. Tetrodotoxin derivatives: Chemical structure and blockage of nerve membrane conductance. Science 156:976–978.

    Google Scholar 

  • Nicolaus, L. K., Cassel, J.F., Carlson, R.B., and Gustavson, C. R. 1983. Taste-aversion conditioning of crows to control predation on eggs. Science 220:212–214.

    Google Scholar 

  • Nowak, R. M. 1991. Walker's Mammals of the World, Vol. II. Johns Hopkins University Press, Baltimore, MD.

    Google Scholar 

  • Ogura, Y. 1958. Some recent problems on fugu-toxin, particularly on crystalline tetrodotoxin. Seitai No Kagaku 9:281–287.

    Google Scholar 

  • Pfennig, D.W., Harcombe, W.R., and Pfennig, K. S. 2001. Frequency-dependent batesian mimicry-Predators avoid look-alikes of venomous snakes only when the real thing is around. Nature 410:323.

    Google Scholar 

  • Rapp, W.F., JR. 1954. American Bittern eats snake. Nebr. Bird Rev. 22:I.

    Google Scholar 

  • Richardson, S. A., Potter, A.E., Lehmkuhl, K.L., Mazaika, R., Mcfadzen, M.E., and Estes, R. 2001. Prey of Ferrunginous Hawks breeding in Washington. Northwest. Nat. 82:58–64.

    Google Scholar 

  • Roper, T.J. and Redston, S. 1987. Conspicuousness of distasteful prey affects the strength and durability of one-trial avoidance learning. Anim. Behav. 35:739–747.

    Google Scholar 

  • Roper, T.J. and Wistow, R. 1986. Aposematic colouration and avoidance learning in chicks. Q. J. Exp. Psychol. 38B:141–149.

    Google Scholar 

  • Rossman, D. A., Ford, N.B., and Seigel, R. A. 1996. The Garter Snakes Evolution and Ecology. University of Oklahoma Press, Norman, OK.

    Google Scholar 

  • Saporito, R. A., Donnelly, M. A., Hoffman, R.L., Garraffo, H.M., and Daly, J. W. 2003. A siphonotid millipede (Rhinotus) as the source of spiropyrrolizidine oximes of dendrobatid frogs. J. Chem. Ecol. 29:2781–2786.

    Google Scholar 

  • SAS INSTITUTE INC. 1999. SAS Software, Version 8 of the SAS System for Windows Copyright© SAS Software1999-2000. SAS Institute Inc., Cary, NC.

  • Schuler, W. and Hesse, E. 1985. On the function of warning coloration: A black and yellow pattern inhibits prey-attack by naive domestic chicks. Behav. Ecol. Sociobiol. 16:249–255.

    Google Scholar 

  • Shine, R., Lemaster, M.P., Moore, I.T., Olsson, M.M., and Mason, R. T. 2001. Bumpus in the snake den: Effects of sex, size, and body condition on mortality of red-sided garter snakes. Evolution 55:598–604.

    Google Scholar 

  • Shine, R., Olsson, M.M., Lemaster, M.P., Moore, I.T., and Mason, R. T. 2000. Effects of sex, body size, temperature, and location on the antipredator tactics of free-ranging gartersnakes (Thamnophis sirtalis, Colubridae). Behav. Ecol. 11:239–245.

    Google Scholar 

  • Sibley, D. A. 2000. The Sibley Guide to Birds. Alfred A. Knopf, New York, NY.

  • Sill´en-Tullberg, B. 1985. The significance of coloration per se, independent of background, for predator avoidance of aposematic prey. Anim. Behav. 33:1382–1384.

    Google Scholar 

  • Smith, H.M. and White, F. N. 1955. Adrenal enlargement and its significance in the Hognose snakes (Heterodon). Herpetologica 11:137–144.

    Google Scholar 

  • Terrick, T. D., Mumme, R.L., and Burghardt, G. M. 1995. Aposematic coloration enhances chemosensory recognition of noxious prey in the garter snake Thamnophis radix. Anim. Behav. 49:857–866.

    Google Scholar 

  • Thompson, J. N. 2000. Hot spots, cold spots, and the geographic mosaic theory of coevolution. Am. Nat. 156:156–174.

    Google Scholar 

  • Williams, B.L., Brodie, E. D., JR., and Brodie, E. D., III. 2002. Comparisons between toxic effects of tetrodotoxin administered orally and by intraperitoneal injection to the garter snake Thamnophis sirtalis. J. Herpetol. 36:112–115.

    Google Scholar 

  • Williams, B.L., Brodie, E. D., JR., and Brodie, E. D., III. 2003. Coevolution of deadly toxins and predator resistance: Self-assessment of resistance by garter snakes leads to behavioral rejection of toxic newt prey. Herpetologica 59:155–163.

    Google Scholar 

  • Yotsu, M., Endo, A., and Yasumoto, T. 1989. An improved tetrodotoxin analyzer. Agric. Biol. Chem. 53:893–895.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, B.L., Brodie, E.D. & Brodie, E.D. A Resistant Predator and Its Toxic Prey: Persistence of Newt Toxin Leads to Poisonous (Not Venomous) Snakes. J Chem Ecol 30, 1901–1919 (2004). https://doi.org/10.1023/B:JOEC.0000045585.77875.09

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOEC.0000045585.77875.09

Navigation