Skip to main content
Log in

Semiochemistry of the Goldeneyed Lacewing Chrysopa oculata: Attraction of Males to a Male-Produced Pheromone

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Gas chromatographic-electroantennographic detection (GC-EAD) experiments showed that antennae of males and females of the goldeneyed lacewing, Chrysopa oculata Say (Co. = Chrysopa), consistently responded to four compounds extracted from the abdominal cuticle of males: nonanal, nonanol, nonanoic acid, and (1R*,2S*,5R*,8R*)-iridodial. These compounds were not detected from abdominal cuticle of females. Thoracic extracts of both sexes contained antennal-stimulatory 1-tridecene and EAD-inactive skatole. Chrysopa oculata adults were most sensitive to (1R,2S,5R,8R)-iridodial standard at an EAD-response threshold between 0.1 and 1 pg, which was 10–100 times lower than thresholds for nonanal and nonanoic acid, and up to 10,000 times lower than thresholds for other compounds tested. A similar EAD response pattern was also found in another Chrysopa sp. (Co. quadripunctata Burmeister). In field-trapping experiments, (1R,2S,5R,8R)-iridodial was the only male-specific compound that attracted Co. oculata males. Males also were weakly attracted to (1R,4aS,7S,7aR)-nepetalactol (an aphid sex pheromone component), probably due to the 5% (1R,2S,5R,8R)-iridodial present in the synthetic sample as an impurity. A herbivore-induced plant volatile, methyl salicylate, increased attraction of males to (1R,2S,5R,8R)-iridodial, whereas 1-tridecene was antagonistic. No females were caught in the entire study. Scanning electron micrographs revealed numerous male-specific, elliptical epidermal glands on the 3rd–8th abdominal sternites of Co. oculata, which are likely the pheromone glands. Another lacewing species, Chrysoperla rufilabris (Burmeister) (Cl. = Chrysoperla), did not produce male-specific volatiles or possess the type of gland presumed to produce pheromone in Co. oculata males, but (Z)-4-tridecene was identified as a major antennal-stimulatory compound from thoracic extracts of both sexes of Cl. rufilabris. Thus, (1R,2S,5R,8R)-iridodial (or its enantiomer) is now identified as a male-produced male aggregation pheromone for Co. oculata, the first pheromone identified for lacewings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Aldrich, J. R. 1995. Chemical communication in the true bugs and parasitoid exploitation, pp. 318–363, in R. T. Card´e and W. J. Bell (eds. ). Chemical Ecology of Insects. Chapman & Hall, New York.

    Google Scholar 

  • Aldrich, J. R. 1999. Predators: Pheromones and kairomones, pp. 357–381, in R. J. Hardie and A. K. Minks (eds. ). Pheromones of Non-lepidopteran Insects Associated with Agricultural Plants. CAB International, Wallingford, U. K.

    Google Scholar 

  • Aldrich, J. R., Kochansky, J. P., and Abrams, C. B. 1984. Attractant for a beneficial insect and its parasitoids: Pheromone of the predatory spined soldier bug, Podisus maculiventris (Hemiptera: Pentatomidae). Environ.Entomol. 13:1031–1036.

    Google Scholar 

  • Anonymous. 2002. Iridodial. Available at www. globalhealingcenter. com.

  • Attygalle, A. B. and Morgan, E. D. 1984. Chemicals from the gland s of ants. Chem.Soc.Rev. 13:245–278.

    Google Scholar 

  • Baker, T. C., Obrycki, J. J., and Zhu, J. W. 2003. Attractants of beneficial insects. U. S. Patent No. 6, 562, 332.

  • Blum, M. S., Wallace, J. D., and Fales, H. M. 1973. Skatole and tridecene: Identification and possible role in a chrysopid secretion. insect Biochem. 3:353–357.

    Google Scholar 

  • Boo, K. S., Chung, I. B., Han, K. S., Pickett, J. A., and Wadhams, L. J. 1998. Response of the lacewing Chrysopa cognata to pheromones of its aphid prey. J.Chem.Ecol. 24:631–643.

    Google Scholar 

  • Boo, K. S., Kang, S. S., Park, J. H., Pickett, J. A., and Wadhams, L. J. 1999. Field trapping of lacewings with aphid pheromones. IOBC/WPRS Bull. 22:35–36.

    Google Scholar 

  • Buser, H.-R., Arn, H., Guerin, P., and Rauscher, S. 1983. Determination of double bond position in monounsaturated acetates by mass spectrometry of dimethyl disulfide adducts. Anal.Chem. 55:818–822.

    Google Scholar 

  • Byers, J. A. 1991. BASIC algorithms for rand om sampling and treatment rand omization. Comput.Biol.Med. 21:69–77.

    Google Scholar 

  • Canard, M. and Principi, M. M. 1984. Life histories and behavior: Development of Chrysopidae. Ser.Entomol. 27:58–149.

    Google Scholar 

  • Castellanos, I. 2003. Costs of Anti-Predator Behavioral Defenses in Caterpillars. PhD Dissertation, Department of Entomology, University of Maryland, College Park.

  • Castellanos, I. and Barbosa, P. 2004. Anti-predator defenses: Linking risk perception to fitness, in P. Barbosa and I. Castellanos (eds. ). Ecology of Predator–Prey Interactions. Oxford University Press, Oxford.

    Google Scholar 

  • Cavi ll, G. W. K., Houghton, E., Mcdonald, F. J., and Williams, P. J. 1976. Isolation and char-acterization of dolichodial and related compounds from the argentine ant, Iridomyrex humilis. insect Biochem. 6:483–490.

    Google Scholar 

  • Chauhan, K. R., Zhang, Q.-H., and Aldrich, J. R. 2004. Iridodials: Enantiospecific synthesis and stereochemical assignment of the pheromone for the goldeneyed lacewing, Chrysopa oculata (Neuroptera: Chrysopidae). Tetrahedron Lett. 45:3339–3340.

    Google Scholar 

  • C¸ okl, A., Virant-boberlet, M., and Mcdowell, A. 1999. Vibrational directionality in the southern green stink bug, Nezara viridula (L. ), is mediated by female song. Anim.Behav. 58:1277–791283.

    Google Scholar 

  • C¸ okl, A. and Virant-doberley, M. 2003. Communication with substrate-borne signals in small plant-dwelling insects. Annu.Rev.Entomol. 48:29–50.

    Google Scholar 

  • Cox, M. F., Brophy, J. J., and Toia, R. F. 1989. Chemotaxonomy of the Australian Dolichoderinae volatile constituents of Iridomyrmex discors. J.Nat.Prod. 52:75–80.

    Google Scholar 

  • Dawson, G. W., Pickett, J. A., and Smiley, W. M. 1996. The aphid sex pheromone cyclopentanoids: Synthesis in the elucidation of structure and biosynthetic pathways. Bioorg.Med.Chem. 4:351–361.

    Google Scholar 

  • El-naggar, L. J. and Beal, J. L. 1980. Iridoids. A review. J.Nat.Prod. 43:649–707.

    Google Scholar 

  • Erbe, E. F., Rango, A., Foster, J., Josberger, E., Pooley, C., and Wergin, W. P. 2003. Collecting, shipping, storing and imaging snowcrystals and ice grains with lowtemperature scanning electron microscopy. Microsc.Res.Tech. 62:19–32.

    Google Scholar 

  • Flint, H. M., Salter, S. S., and Walters, S. 1979. Caryophyllene: An attractant for the green lacewing Chrysopa carnea. Environ.Entomol. 8:1123–1125.

    Google Scholar 

  • Hagen, K. S. 1986. Ecosystem analysis: Plant cultivars (HPR), entomophagous species and food supplements, pp. 151–197, in D. J. Boethel and R. D. Eikenbary(eds. ). Interactions of Plant Resistance and Parasitoids and Predators of Insects. Wiley, New York.

    Google Scholar 

  • Han, B. Y. and Chen, Z. M. 2002. Behavioral and electrophysiological responses of natural enemies to synomones from tea shoots and kairomones from tea aphids Toxoptera aurantii. J.Chem.Ecol. 28:2203–2219.

    Google Scholar 

  • Henry, C. S. 1979. Acoustical communication during courtship and mating in the green lacewing Chrysopa carnea (Neuroptera: Chrysopidae). Ann.Entomol.Soc.Am. 72:68–79.

    Google Scholar 

  • Henry, C. S. 1980a. The importance of low frequency substrate-borne sounds in lacewing communication (Neuroptera: Chrysopidae). Ann.Entomol.Soc.Am. 73:617–621.

    Google Scholar 

  • Henry, C. S. 1980b. Acoustical communication in Chrysopa rufilabris (Neuroptera: Chrysopidae) a green lacewing with two distinct calls. Proc.Entomol.Soc.Wash. 82:1–8.

    Google Scholar 

  • Henry, C. S. 1980c. The courtship call of Chrysopa downesi Banks (Neuroptera: Chrysopidae): Its evolutionary significance. Psyche 86:291–29

    Google Scholar 

  • Henry, C. S. 1982. Reproductive and calling behavior in two closely related sympatric lacewing species, Chrysopa oculata and Chrysopa chi (Neuroptera: Chrysopidae). Proc.Entomol.Soc.Wash. 84:191–203.

    Google Scholar 

  • Hooper, A. M., Donato, B., Woodcock, C. M., Park, J. H., Paul, R. L., Boo, K. S., Hardie, J., and Pickett, J. A. 2002. Characterization of (1, 4, 4a, 7, 7a )-dihydronepetalactol as a semiochemical for lacewings, including Chrysopa spp. and Peyerimhoffina gracilis. J.Chem.Ecol. 28:849–864.

    Google Scholar 

  • Huth, A. and Dettner, K. 1990. Defense chemicals from abdominal gland s of 13 rove beetle species of subtribe Staphylinina (Coleoptera: Staphylinidae: Staphylininae). J.Chem.Ecol. 16:2691–2712.

    Google Scholar 

  • Hwang, J. C. and Bickley, W. E. 1961. The reproductive system of Chrysopa oculata (Neuroptera: Chrysopidae). Ann.Entomol.Soc.Am. 54:422–429.

    Google Scholar 

  • Hyeon, S. B., Isoe, S., and Sakan, T. 1968. The structure of neomatatabiol, the potent attractant for Chrysopa from Actinidia polygama. Tetrahedron Lett. 51:5325–5326.

    Google Scholar 

  • James, D. G. 2003. Field evaluation of herbivore-induced plant volatiles as attractants for beneficial insects: Methyl salicylate and the green lacewing, Chrysopa nigricornis. J.Chem.Ecol. 29:1601–1609.

    Google Scholar 

  • Mendel, Z., Dunkelblum, E., Branco, M., Franco, J. C., Kurosawa, S., and Mori, K. 2003. Synthesis and structure–activity relationship of diene modified analogs of Matsucoccus sex pheromones. Naturwissenschaften 90:313–317.

    Google Scholar 

  • Nascimento, R. R., Billen, J., Santana, A. E. G., Morgan, E. D., and Harada, A. Y. 1998. Pygidial gland of Aztecanr. bicolor and Azteca chartifex: Morphology and chemical identification of volatile components. J.Chem.Ecol. 24:1629–1637.

    Google Scholar 

  • New, T. R. 1975. The biology of Chrysopidae and Hemerobiidae (Neuroptera) with reference to their usage as biocontrol agents: A review. Trans.R.Entomol.Soc.Lond. 127:115–140.

    Google Scholar 

  • Principi, M. M. 1949. Contributi allo studio dei neurotteri italiani. 8. Morfologia, anatomia e fun-zionamento degli apparati genitali nel gen. Chrysopa Leach (Chrysopa septempuctata Wesm.e Chrysopa formosa Brauer). Boll.Ist.Entomol.Univ.Bologna 17:316–362.

    Google Scholar 

  • Principi, M. M. 1954a. Contributi allo studio dei neurotteri italiani. 11.Chrysopa viridana Schn. Boll.Ist.Ent.Univ.Bologna 20:359–376.

    Google Scholar 

  • Principi, M. M. 1954b. Singolari strutture gland olari nel torace e nell'addome dei maschi di alcuni specie di neuritteri crisopidi. Atti Accad.Naz.Lincei Rc.,Cl.Sci. 16:678–685.

    Google Scholar 

  • Principi, M. M. and Canard, M. 1984. Feeding habits [Chrysopidae]. Ser.Entomol. 27:76–92.

    Google Scholar 

  • Ridgway, R. L. and Murphy, W. L. 1984. Biological control in the field, pp. 220–228, in M. Canard, Y. Semeria, and T. R. New (eds. ). Biology of Chrysopidae. Dr. W. Junk Publishers, The Hague, The Netherlands.

    Google Scholar 

  • Rosenheim, J. A. 1998. Higher-order predators and the regulation of insect herbivore populations. Annu.Rev.Entomol. 43:421–427.

    Google Scholar 

  • Sakan, T., Isoe, S., and Hyeon, S. B. 1970. The chemistry of attractants for Chrysopidae from Actinidia polygama Miq., pp. 237–247, in D. L. Wood, R. M. Silverstein, and M. Nakajima (eds. ). Control of Insect Behavior by Natural Products. Academic Press, New York.

    Google Scholar 

  • Smith, R.M., Brophy, J.J., Cavill, G. W. K., and Davies , N. W. 1979. Iridodials and nepetalactonein the defensive secretion of the coconut stick insect Graeffea crouani. J. Chem. Ecol. 5:727–735.

    Google Scholar 

  • Tauber, M. J., Tauber, C. A., Daane, K. M., and Hagen, K. S. 2000. Commercialization of predators: Recent lessons from green lacewings (Neuroptera: Chrysopidae: Chrysoperla). Am.Entomol. 46:26–38.

    Google Scholar 

  • Tulisalo, U. 1984. Biological control in the green house, pp. 228–233, in M. Canard, Y. Semeria, and T. R. New (eds. ), Biology of Chrysopidae. Dr. W. Junk Publishers, The Hague, The Netherlands.

    Google Scholar 

  • Walling, L. L. 2000. The myriad plant responses to herbivores. J.Plant Growth Regul. 19:195–216.

    Google Scholar 

  • Zar, J. H. 1984. Biostatistical Analysis. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Zhang, Q.-H. and Schlyter, F. 2003. Redundancy, synergism, and active inhibitory range of non-host volatiles in reducing pheromone attraction of European spruce bark beetle Ips typographus. Oikos 101:299–310.

    Google Scholar 

  • Zhang, Q.-H., Schlyter, F., and Birgersson, G. 2000. Bark volatiles from nonhost angiosperm trees of spruce bark beetle, Ips typographus L. (Coleoptera: Scolytidae): Chemical and electro-physiological analysis. Chemoecology 10:69–80.

    Google Scholar 

  • Zhu, J. W., Coss´ e, A. A., Obrycki, J. J., Boo, K. S., and Baker, T. C. 1999. Olfactory reactions of the twelve-spotted lady beetle, Coleomegilla maculata and the green lacewing, Chrysoperla carnea. to semiochemicals released from their prey and host plant: Electroantennogram and behavioral responses. J.Chem.Ecol. 25:1163–1177.

    Google Scholar 

  • Zhu, J. W., Unelius, R. C., Park, K. C., Ochieng, S. A., Obrycki, J. J., and Baker, T. C. 2000. Identification of ()-4-tridecene from defensive secretion of green lacewing, Chrysoperla carnea. J.Chem.Ecol. 26:2421–2434.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, QH., Chauhan, K.R., Erbe, E.F. et al. Semiochemistry of the Goldeneyed Lacewing Chrysopa oculata: Attraction of Males to a Male-Produced Pheromone. J Chem Ecol 30, 1849–1870 (2004). https://doi.org/10.1023/B:JOEC.0000042406.76705.ab

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOEC.0000042406.76705.ab

Navigation