Skip to main content
Log in

Antiherbivore Chemistry of Eucalyptus--Cues and Deterrents for Marsupial Folivores

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Formylated phloroglucinol compounds (FPCs) are the single most important factor determining the amount of foliage that marsupial folivores eat from individual Eucalyptus trees. Folivores need to recognize which trees contain FPCs if they are to avoid them and forage efficiently, they are challenged by great diversity in the types and quantities of FPCs present, even within eucalypt species. We investigated the relationship between FPCs and terpenoids in species with both simple and complex FPC profiles and found strong positive correlations between terpenes generally, and several monoterpenes in particular, and FPCs. Terpene cues also indicated qualitative differences in trees' FPC profiles. We describe significant qualitative and quantitative variation in FPCs in several species that are important food sources for marsupial folivores. New discoveries include the fact that macrocarpals occur as two major, distinct groups and several new dimeric acylphloroglucinols from Eucalyptus strzeleckii. These patterns add to the chemical complexity of the foraging environment for folivores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Adams, R. P. 1995. Identification of Essential Oil Components by Gas Chromatography/Mass Spec-trometry. Allured, Carol Stream, IL.

  • Amano, T., Komiya, T., Hori, M., Goto, M., Kozuka, M., and Sawada, T. 1981. Isolation and characterization of euglobals from Eucalyptus globulus Labill. by preparative reverse-phase liquid chromatography. J.Chromatogr. 208:347–355.

    Google Scholar 

  • Betts, T. J. 2000. Solid phase microextraction of volatile constituents from individual fresh Eucalyptus leaves of three species. Planta Med. 66:193–195.

    Google Scholar 

  • Bolte, M. L., Crow, W. D., Takahashi, N., Sakurai, A., Uji-ie, M., and Yoshida, S. 1985. Structure–activity relationships of grand inol--A germination inhibitor in Eucalyptus. Agric.Biol.Chem. 49:761–768.

    Google Scholar 

  • Brophy, J. J., Goldsack, R. J., Forster, P. I., Clarkson, J. R., and Fookes, C. J. R. 1996. Mass spectra of some â-triketones from Australian Myrtaceae. J.Essent.Oil Res. 8:465–470.

    Google Scholar 

  • Brophy, J. J. and Southwell, I. A. 2002. Eucalyptus chemistry, pp. 102–160, in J. J. W. Coppen (ed.). Eucalyptus: The Genus Eucalyptus. Taylor & Francis, London and New York.

  • Dewick, P. M. 2002. The biosynthesis of C5–C25 terpenoid compounds. Nat.Prod.Rep. 19:181–222.

    Google Scholar 

  • Doran, J. C. 1992. Variation in and Breeding for Oil Yields in Leaves of Eucalyptus camaldulensis. PhD Thesis, Australian National University, Canberra.

  • Dungey, H. S., Potts, B. M., Whitham, T. G., and Li, H. F.2000. Plant genetics affects arthropod community richness and composition: Evidence from a synthetic eucalypt hybrid population. Evolution 54:1938–1946.

    Google Scholar 

  • Dunlop, P. J., Bignell, C. M., and Hibbert, D. B. 2000. Use of gas chromatograms of essential leaf oils to compare clones of Eucalyptus camaldulensis. Biochem.Syst.Ecol. 28:383–391.

    Google Scholar 

  • Eschler, B. M. and Foley, W. J. 1999. A new sideroxylonal from Eucalyptus melliodora. Aust.J.Chem. 52:157–158.

    Google Scholar 

  • Eschler, B. M., Pass, D. M., Willis, R., and Foley, W. J. 2000. Distribution of foliar formylated phloroglucinol derivatives amongst Eucalyptus species. Biochem.Syst.Ecol. 28:813–824.

    Google Scholar 

  • Eyles, A., Davies, N. W., and Mohammed, C. 2003. Novel detection of formylated phloroglucinol compounds (FPCs) in the wound wood of Eucalyptus globulus and E.nitens. J.Chem.Ecol. 29:881–898.

    Google Scholar 

  • Foley, W. J., Lassak, E. V., and Brophy, J. 1987. Digestion and absorption of Eucalyptus essential oils in greater glider (Petauroides volans) and brushtail possum (Trichosurus vulpecula). J.Chem.Ecol. 13:2115–2130.

    Google Scholar 

  • Ghisalberti, E. L. 1996. Bioactive acylphloroglucinol derivatives from Eucalyptus species. Phyto-chemistry 41:7–22.

  • Heller, S. R. and Milne, G. W. A. 1978, 1980, 1983. EPA/NIH Mass Spectral Database. U. S. Government Printing Office, Washington, DC.

    Google Scholar 

  • Horn, D. H. S. and Lamberton, J. A. 1963. Nuclear magnetic resonance study of a new flavonoid. Chem.Ind. 1963:691–692.

    Google Scholar 

  • Joulain, D. and K¨onig, W. A. 1998. The Atlas of Spectral Data of Sesquiterpene Hydrocarbons. E. B. Verlag, Hamburg, Germany.

  • Lawler, I. R., Eschler, B. M., Schliebs, D. M., and Foley, W. J.1999a. Relationship between chem-ical functional groups on Eucalyptus secondary metabolites and their effectiveness as marsupial antifeedants. J.Chem.Ecol. 25:2561–2573.

    Google Scholar 

  • Lawler, I. R., Foley, W. J., and Eschler, B. M. 2000. Foliar concentration of a single toxin creates habitat patchiness for a marsupial folivore. Ecology 81:1327–1338.

    Google Scholar 

  • Lawler, I. R., Foley, W. J., Eschler, B. M., Pass, D. M., and Hand asyde, K. 1998a. Intraspecific variation in Eucalyptus secondary metabolites determines food intake by folivorous marsupials. Oecologia 116:160–169.

    Google Scholar 

  • Lawler, I. R., Foley, W. J., Pass, G. J., and Eschler, B. M. 1998b. Administration of a 5HT3 receptor antagonist increases the intake of diets containing Eucalyptus secondary metabolites by marsupials. J.Compar.Physiol.B, Biochem., Syst., Eupnviron.Physiol. 168:611–618.

    Google Scholar 

  • Lawler, I. R., Stapley, J., Foley, W. J., and Eschler, B. M. 1999b. Ecological example of condi-tioned flavor aversion in plant–herbivore interactions: Effect of terpenes of Eucalyptus leaves on feeding by common ringtail and brushtail possums. J.Chem.Ecol. 25:401–415.

    Google Scholar 

  • Legendre, P. 2001. Model II Regression--User's Guide, p. 23. D´epartement de sciences biologiques, Universit´e de Montr´eal.

  • Menut, C., Bessiere, J. M., Samate, A. D., Millogo-rasolodimby, J., and Nacro, M. 1999. Apodophyllone and isotorquatone, two arenic ketones from Eucalyptus apodophylla. Phyto-chemistry 51:975–978.

    Google Scholar 

  • Mitaine-offer, A. C., D´esir´edjoukeng, J., Azefack tapondjou, L., Bouda, H., Lerche, H., Lontsi, D., and Lacaille-dubois, M. A. 2003. Constituents of the leaves of Eucalyptus saligna. Biochem.Syst.Ecol. 31:1457–1460.

    Google Scholar 

  • Moore, B. D., Wallis, I. R., Wood, J., and Foley, W. J. in press. Foliar nutrition, site quality and temperature affect foliar chemistry of tallowwood (Eucalyptus microcorys). Ecological Monographs.

  • Nishizawa, M., Emura, M., Kan, Y., Yamada, H., Ogawa, K., and Hamanaka, N. 1992. Macro-carpals: HIV-reverse transcriptase inhibitors of Eucalyptus globulus. Tetrahedron Lett. 33:2983–2986.

    Google Scholar 

  • Osawa, K., Yasuda, H., Morita, H., Takeya, K., and Itokawa, H. 1995. Eucalyptone from Euca-lyptus globulus. Phytochemistry 40:183–184.

    Google Scholar 

  • Osawa, K., Yasuda, H., Morita, H., Takeya, K., and Itokawa, H. 1996. Macrocarpals H, I and J from the leaves of Eucalyptus globulus. J.Nat.Prod. 59:823–827.

    Google Scholar 

  • Rule, K. 1992. Two new species of Eucalyptus (Myrtaceae) in south-eastern Australia. Muelleria 7:497–505.

    Google Scholar 

  • Sarker, S. D., Bartholomew, B., Nash, R. J., and Simmonds, M. S. J. 2001. Sideroxylin and 8-demethylsideroxylin from Eucalyptus saligna (Myrtaceae). Biochem.Syst.Ecol. 29:759–762.

    Google Scholar 

  • Satoh, H., Etoh, H., Watanabe, N., Kawagishi, H., Arai, K., and Ina, K. 1992. Structures of sideroxylonals from Eucalyptus sideoxylon. Chem.Lett. 1917–1920.

  • Shibuya, Y., Kusuoka, H., Murphy, G. K., and Nishizawa, Y. 2001. Isolation and structure de-termination of new macrocarpals from a herbal medicine, Eucalyptus globulus leaf. Nat.Med. 55:28–31.

    Google Scholar 

  • Singh, I. P., Hayakawa, R., Etoh, H., Takasaki, M., and Konoshima, T. 1997. Grandinal, a new phloroglucinol dimer from Eucalyptus grandis. Biosci.Biotechnol.Biochem. 61:921–923.

    Google Scholar 

  • Stenhagen, E., Abrahamsson, S., and Mclafferty, F. W. 1974. Registry of Mass Spectra Data. Wiley, New York.

  • Swigar, A. A. and Silverstein, R. M. 1981. Monoterpenes. Aldrich, Milwaukee, WI.

  • Takasaki, M., Konoshima, T., Fujitani, K., Yoshida, S., Nishimura, H., Tokuda, H., Nishino, H., Iwashima, A., and Kosuka, M. 1990. Inhibitors of skin-tumor promotion. 8: Inhibitory effects of euglobals and their related compounds on Epstein-Barr virus activation. Chem.Pharm.Bull.(Tokyo) 38:2737–2739.

    Google Scholar 

  • Terada, Y., Saito, J., Kawai, T., Singh, I. P., and Etoh, H. 1999. Structure–activity relationship of phloroglucinol compounds from Eucalyptus, as marine antifoulants. Biosci.Biotechnol.Biochem. 63:276–280.

    Google Scholar 

  • Wallis, I. R., Watson, M. L., and Foley, W. J. 2002. Secondary metabolites in Eucalyptus melliodora:Field distribution and laboratory feeding choices by a generalist herbivore, the common brushtail possum. Aust.J.Zool. 50:507–519.

    Google Scholar 

  • Yamakoshi, Y., Murata, M., Shimizu, A., and Homma, S. 1992. Isolation and characterisation of Macrocarpals B-G antibacterial compounds from Eucalyptus macrocarpa. Biosci.Biotechnol.Biochem. 56:1570–1576.

    Google Scholar 

  • Yoshida, S., Asami, T., Kawano, T., Yoneyama, K., Crow, W. D., Paton, D. M., and Takahashi, N. 1988. Photosynthetic inhibitors in Eucalyptus grandis. Phytochemistry 27:1943–1946.

    Google Scholar 

  • Zini, C. A., Augusto, F., Christensen, E., Caramao, E. B., and Pawliszyn, J. 2002. SPME applied to the study of volatile organic compounds emitted by three species of Eucalyptus in situ. J.Agric.Food Chem. 50:7199–7205.

    Google Scholar 

  • Zini, C. A., Zanin, K. D., Christensen, E., Caramao, E. B., and Pawliszyn, J. 2003. Solid-phase microextraction of volatile compounds from the chopped leaves of three species of Eucalyptus. J.Agric.Food Chem. 51:2679–2686.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, B.D., Wallis, I.R., Palá-Paúl, J. et al. Antiherbivore Chemistry of Eucalyptus--Cues and Deterrents for Marsupial Folivores. J Chem Ecol 30, 1743–1769 (2004). https://doi.org/10.1023/B:JOEC.0000042399.06553.c6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOEC.0000042399.06553.c6

Navigation