Journal of Chemical Ecology

, Volume 30, Issue 8, pp 1479–1492 | Cite as

The Chemistry of Exploding Ants, Camponotus SPP. (Cylindricus COMPLEX)

  • T. H. Jones
  • D. A. Clark
  • A. A. Edwards
  • D. W. Davidson
  • T. F. Spande
  • R. R. Snelling


A detailed comparative analysis of the exocrine chemistry of nine Bruneian Camponotus species in the cylindricus complex is reported. Workers of these species are known to have hypertrophied mandibular glands and release their glandular contents suicidally from the head by rupturing the inter- segmental membrane of the gaster. All of the species produce mixtures of polyacetate-derived aromatics, including hydroxyacetophenones, which display pH-dependent color changes, and aliphatic hydrocarbons and alcohols. In addition, three species contained (6R)-2,6-dimethyl-(2E)-octen-1,8-dioic acid (9) or (3S)-8-hydroxycitro-nellic acid (10a), previously unreported from insects. These compounds were characterized from their spectral data, and confirmed by comparison with synthetic samples. The allomonal role of these compounds is based on numerous field observations, and their chemotaxonomic value is presented.

Camponotus spp. Hymenoptera Formicidae polyacetate-derived aromatics acyclic terpenes chemotaxonomy territoriality autothysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baroni-Urbani, C., Bolton, B.,and Ward, P. S. 1992. The internal phylogeny of ants (Hymenoptera: Formicidae). System Entomol. 17:301-329.Google Scholar
  2. Bestmann, H. J., Haak, U., Kern, F., and HÖlldobler, B. 1995. 2,4-Dimethyl-5-hexanolide, a trail pheromone component of the carpenter ant Camponotus herculeanus. Naturwissenschaften 82:142-144.Google Scholar
  3. Bestmann, H. J., Liepold, B., Kress, A., and Hofmann, A. 1999. (2S, 4R, 5S)-2,4-Dimethyl-5-hexanolide: Ants of different Camponotus species can distinguish the absolute configuration of their trail pheromone. Chem. Eur. J. 5:2984-2989.Google Scholar
  4. Bestmann, H. J., Übler, E., and HÖlldobler, B. 1997. First biosynthetic studies on trail pheromones in ants. Angew. Chem. Int. Ed. Engl. 36:395-397.Google Scholar
  5. Blum, M. S., Morel, L., and Fales, H. M. 1987. Chemistry of the mandibular gland secretion of the ant Camponotus vagus. Comp. Biochem. Physiol. 86B:251-252.Google Scholar
  6. Bolton, B. 1995. A new general catalog of the ants of the world. Harvard University Press. Cambridge, MA.Google Scholar
  7. Bostedor, R. G., Karkas, J. D., Arison, B. H., Bansal, V. S., Vaidya, S., Germerhausen, J.I., Kurtz, M.M., and Bergstrom, J. D. 1997. Farnesol derived dicarboxylic acids in the urine of animals treated with zaragozic acid A or with farnesol. J. Biol. Chem. 272:9197-9203.Google Scholar
  8. Brand, J. M., Duffield, R. M., Macconnell, J. G., Blum, M. S., and Fales, H. M. 1973a. Castespecific compounds in male carpenter ants. Science 179:388-389.Google Scholar
  9. Brand, J. M., Fales, H. M., Sokoloski, E. A., Macconnell, J. G., Blum, M. S., and Duffield, R. M. 1973b. Identification of mellien in the mandibular gland secretions of carpenter ants. Life Sci. 13:201-211.Google Scholar
  10. Brittelli, D. R. 1981. Phosphite-mediated in situ carboxyvinylation: A new general arylic acid synthesis. J. Org. Chem. 46:2514-2520.Google Scholar
  11. Buschinger, A., and Maschwitz, U. 1984. Defensive behavior and defensive mechanisms in ants, pp. 95-150, in H. R. Hermann (ed.). Defensive Mechanisms in Social Insects. Praeger, NY.Google Scholar
  12. Cavill, G. W. K. and Hinterberger, H. 1960. The chemistry of ants: Terpenoid constituents of some Dolichoderus and Iridomyrmex species. Aust. J. Chem. 13:514-519.Google Scholar
  13. Davidson, D. W. 1977. The role of resource imbalances in the evolutionary ecology of tropical arboreal ants. Biol. J. Linn. Soc. 61:153-181.Google Scholar
  14. Davidson, D. W., Longino, J. T., and Snelling, R. R. 1988. Pruning of host plant neighbors by ants: An experimental approach. Ecology 69:801-808.Google Scholar
  15. Fairlamb, I. J. S., Dickinson, J. M., and Pegg, M. 2001. Selenium dioxide E-methyl oxidation of suitably protected geranyl derivatives-synthesis of farnesyl mimics. Tetrahedr. Lett. 42:2205-2208.Google Scholar
  16. Floren, A. and Linsenmair, K. E. 2000. Do ant mosaics exist in pristine lowland forests? Oecologia 123:129-137.Google Scholar
  17. Greter, J., Lindstedt, S., and Steen, G. 1983. 2,6-Dimethyloctanedioic acid—a metabolite of phytanic acid in Refsum's disease. Clin. Chem. 29:434-437.Google Scholar
  18. Haak, U., HÖlldobler, B., Bestmann, H. J., and Kern, F. 1996. Species-specificity in trail pheromones and Dufour's gland contents of Camponotus atriceps and C. floridanus (Hymentoptera: Formicidae). Chemoecology 7:85-93.Google Scholar
  19. Hauser, F. M. and Pogany, S. A. 1980. 2-Hydroxy-6-methylbenzoic acid derivatives. Synthesis 1980:814-815.Google Scholar
  20. HÖlldobler, B. 1983. Territorial behavior of the green tree ant (Oecophylla smaragdina). Biotropica 15:241-250.Google Scholar
  21. HÖlldobler, B. and Wilson, E. O. 1990. The Ants. The Belknap Press of Harvard University Press, Cambridge MA, pp. 337-339.Google Scholar
  22. Kelly, T. R. and Kim, M. H. 1992. Synthesis of schumanniophytine and isoshumanniophytine. J. Org. Chem. 57:1593-1597.Google Scholar
  23. Kohl, E., HÖlldobler, B., and Bestmann, H. J. 2001. Trail and recruitment pheromones in Camponotus socius (Hymenoptera: Formicidae). Chemoecology 11:67-73.Google Scholar
  24. Kohl, E., HÖlldobler, B., and Bestmann, H. J. 2003. Trail pheromones and Dufour gland contents in three Camponotus species (C. castenaeus, C. balzani, C. sericeiventris: Formicidae, Hymenoptera). Chemoecology 13:113-122.Google Scholar
  25. Kuhn, R., Kohler, F., and Kohler, L. 1936. Uber Methyl-oxydationen imTierkorper. Hoppe-Seyler's Zeit. fur Physiol. Chem. 242:171-197.Google Scholar
  26. Lloyd, H. A., Schmuff, N. R., and Hefetz, A. 1984. Chemistry of the male mandibular gland secretion of the carpenter ant, Camponotus thoracicus fellah Emery. Comp. Biochem. Physiol. 78B:687-689.Google Scholar
  27. Maschwitz, U. and Maschwitz, E. 1974. Platzende Arbeiterinnen: Eine neue Art der Feindabwehrbei sozialen Haütflugern. Oecologia 14:289-294.Google Scholar
  28. Morgan, E. D., Jackson, B. D., Ollett, D.G., and Sales, G. W. 1990. Trail pheromone of the ant Tetramorium impurum and model compounds: Structure-activity comparisons. J. Chem. Ecol. 16:3493-3510.Google Scholar
  29. Nakamura, T. and Yamachita, S. 2000. Learning and discrimination of colored papers in jumping spiders (Araneae: Salticidae). J. Comp. Physiol. A 186:897-901.Google Scholar
  30. NIST/EPA/NIH. 1999. Mass Spectral Library on CD-ROM, Version 1.7. Gaithersburg, MD. (© U.S. Secretary of Commerce).Google Scholar
  31. Paquette, L. A., Deaton, D.N., Endo, Y., and Poupart, M.-A. 1993. Studies directed toward the total synthesis of cerorubenic acid-III. J. Org. Chem. 58:4262-4273.Google Scholar
  32. Scott, A. I. 1964. Interpretation of the Ultraviolet Spectra of Natural Products. Macmillan, New York, pp. 110, 150.Google Scholar
  33. Singh, J., Sharma, M., Kaur, I., and Kad, G. L. 2000. Exclusive 1,2-reduction of functionalized conjugated aldehydes with sodium triacetoxyborohydride. Synth. Comm. 30:1515-1519.Google Scholar
  34. Torres, J. A., Snelling, R.R., Blum, M. S., Flournoy, R.C., Jones, T. H., and Duffield, R. M. 2001. Mandibular gland chemistry of four Caribbean species of Camponotus (Hymenoptera: Formicidae). Biochem. Syst. Ecol. 29:673-680.Google Scholar
  35. Übler, E., Kern, F., Bestmann, H. J., HÖlldobler, B., and Attygalle, A. B. 1995. Trail pheromone of two formicine ants, Camponotus silvicola and C. rufipes. Naturwissenschaften 82:523-525.Google Scholar
  36. Vaidya, S., Bostedor, R., Kurtz, M. M., Bergstrom, J. D., and Bansal, V. S. 1998. Massive production of farnesol-derived dicarboxylic acids in mice treated with the squalene synthase inhibitor zaragozic acid A. Arch. Biochem. Biophys. 355:84-92.Google Scholar
  37. Yang, D. and Zhang, C. 2001. Ruthenium-catalyzed oxidative cleavage of olefins to aldehydes. J. Org. Chem. 66:4814-4818.Google Scholar
  38. Yokoyama, Y. and Tsuchikura, K. 1992. Doubly allylic strain-controlled diastereoselective intramolecular Michael addition and a synthesis of ( ±)-iridomyrmecin. Tetrahedr. Lett. 33:2823-2824.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • T. H. Jones
    • 1
  • D. A. Clark
    • 1
  • A. A. Edwards
    • 2
  • D. W. Davidson
    • 3
  • T. F. Spande
    • 4
  • R. R. Snelling
    • 5
  1. 1.Department of ChemistryVirginia Military Institute, LexingtonVirginiaUSA
  2. 2.Department of ChemistryUniversiti Brunei DarussalamBrunei Darussalam
  3. 3.Department of BiologyUniversity of UtahUtahUSA
  4. 4.Laboratory of Bioorganic Chemistry, NIH, NIDDKMarylandUSA
  5. 5.Entomology DivisionNatural History Museum of Los Angeles CountyLos Angeles, CaliforniaUSA

Personalised recommendations