Journal of Chemical Ecology

, Volume 30, Issue 7, pp 1409–1429 | Cite as

Creosote Bush (Larrea tridentata) Resin Increases Water Demands and Reduces Energy Availability in Desert Woodrats (Neotoma lepida)

  • Antonio M. MangioneEmail author
  • M. Denise Dearing
  • William H. Karasov


Although many plant secondary compounds are known to have serious consequences for herbivores, the costs of processing them are generally unknown. Two potential costs of ingestion and detoxification of secondary compounds are elevation of the minimum drinking water requirement and excretion of energetically expensive metabolites (i.e., glucuronides) in the urine. To address these impacts, we studied the costs of ingestion of resin from creosote bush (Larrea tridentata) on desert woodrats (Neotoma lepida). The following hypotheses were tested: ingestion of creosote resin by woodrats (1) increases minimum water requirement and (2) reduces energy available by increasing fecal and urinary energy losses. We tested the first hypothesis, by measuring the minimum water requirement of woodrats fed a control diet with and without creosote resin. Drinking water was given in decreasing amounts until woodrats could no longer maintain constant body mass. In two separate experiments, the minimum drinking water requirement of woodrats fed resin was higher than that of controls by 18–30% (about 1–1.7 ml/d). We tested several potential mechanisms of increased water loss associated with the increase in water requirement. The rate of fecal water loss was higher in woodrats consuming resin. Neither urinary water nor evaporative water loss was affected by ingestion of resin. Hypothesis 2 was tested by measuring energy fluxes of woodrats consuming control vs. resin-treated diets. Woodrats on a resin diet had higher urinary energy losses and, thus, metabolized a lower proportion of the dietary energy than did woodrats on control diet. Fecal energy excretion was not affected by resin. The excretion of glucuronic acid represented almost half of the energy lost as a consequence of resin ingestion. The increased water requirement and energy losses of woodrats consuming a diet with resin could have notable ecological consequences.

Woodrats creosote resin secondary compounds herbivores water requirement osmolarity urine metabolizable energy glucuronic acid detoxification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BEAUPRE, S. J. and DUNHAM, A. E. 1995. A comparison of ratio-based and covariance analyses of nutritional data set. Funct. Ecol. 9:876–880.Google Scholar
  2. BELOVSKY, G. E. and SCHMITZ, O. J. 1991. Mammalian herbivore optimal foraging and the role of plant defenses, pp. 1–28, inR. T. Palo and C. T. Robbins (eds.). Plant Defenses Against Mammalian Herbivory. CRC Press, Boca Raton, FL.Google Scholar
  3. BRYANT, J. P., REICHARDT, P. B., CLAUSEN, T. P., PROVENZA, F. D., and KUROPAT, P. J. 1992.Woody plant-mammal interactions, inHerbivores. Their Interactions with Secondary Plant Metabolites, G. A. Rosenthal and M. R. Berenbaum (eds.). Vol. II: Ecological and Evolutionary Processes (2nd edn.)., Academic Press, San Diego, CA.Google Scholar
  4. CAMERON, G. N. and RAINEY, G. D. 1972. Habitat utilization by Neotoma lepidain the Mojave Desert. J. Mammal. 53:251–266.Google Scholar
  5. DASH, J. A. 1988. Effect of dietary terpenes on glucuronic acid excretion and ascorbic turnover in the brushtail possum (Trichosurus vulpecula). Comp. Biochem. Physiol. B 89B:221–226.Google Scholar
  6. DEARING, D. M., MANGIONE, A. M., KARASOV, W. H., MORZUNOV, S., OTTESON, E., and ST. JEOR, S. 1998. Prevalence of Hantavirus in four Neotomaspecies in the southwestern United States. J. Mammal. 79:1254–1259Google Scholar
  7. DEARING, M. D., MANGIONE, A. M., and KARASOV, W. H. 2001. Plant secondary compounds as diuretics: An overlooked consequence. Am. Zool. 41:890:901Google Scholar
  8. DEARING, M. D., MANGIONE, A. M., and KARASOV, W. H. 2002. Ingestion of plant secondary compounds causes diuresis in woodrat herbivores. Oecologia 130:576–584.Google Scholar
  9. DIETZ, A. B., HAGERMAN, A. E., and BARRETT, G. W. 1994. Role of condensed tannin on salivary tannin-binding proteins, bioenergetics, and nitrogen digestibility in Microtus pennsylvanicus. J. Mammal. 75:880–889.Google Scholar
  10. ERNEST, K. A. 1994. Resistance of Creosote bush to mammalian herbivory: Temporal consistency and browsing-induced changes. Ecology 75:1684–1692.Google Scholar
  11. FREELAND, W. J. and JANZEN, D. H. 1974. Strategies in herbivory by mammals: The role of plant secondary compounds. Am. Nat. 108:269–289.Google Scholar
  12. FREELAND, W. J., CALCOTT, P. H., and GEISS, D. P. 1985. Allelochemicals, minerals and herbivore population size. Biochem. Syst. Ecol. 13:195–206.Google Scholar
  13. GALATI, E. M., TROVATO, A., KIRJAVAINEN, S., FORESTIERI, A. M., ROSSITTO, A., and MONFORTE, M. T. 1996. Biological effects of hesperidin, a Citrus flavonoid. (Note III): Antihypertensive and diuretic activity in rat. Farmaco (Rome) 51:219–221.Google Scholar
  14. GLICK, Z. and JOCELYN, M. A. 1970a. Food intake depression and other metabolic effects of tannic acid in the rat. J. Nut. 100:509–515.Google Scholar
  15. GLICK, Z. and JOCELYN, M. A. 1970b.Effect of tannic acid and related compounds on the absorption and utilization of proteins in the rat. J. Nut. 100:516–520.Google Scholar
  16. GRICE, H. C., BECKING, G., and GOODMAN, T. 1968. Toxic properties of nordihydroguaiaretic acid. Food Cosm. Toxicol. 6:155–161.Google Scholar
  17. GOODMAN, T., GRICE, H. C., BECKING, G. C., and SALEM, F. A. 1970. A cystic nephropathy induced by nordihydroguaiaretic acid in the rat. Lab. Invest. 23:93–107.Google Scholar
  18. GUGLIELMO, C. G., KARASOV, W. H., and JAKUBAS, W. J. 1996. Nutritional cost of a plant secondary metabolite explains selective foraging by ruffed grouse. Ecology 77:1103–1115.Google Scholar
  19. HAUKIOJA, E. 1980. On the role of plant defenses in the fluctuation of herbivore populations. Oikos 35:202–213.Google Scholar
  20. IASON, G. R. and MURRAY, A. H. 1996. The energy costs of ingestion of naturally occurring nontannin plant phenolics by sheep. Physiol. Zool. 69:532–546.Google Scholar
  21. JAKUBAS, W. J., KARASOV, W. H., and GUGLIELMO, C. G. 1993a. Ruffed grouse tolerance and biotransformation of the plant secondary metabolite coniferyl benzoate. The Condor 96:625–640.Google Scholar
  22. JAKUBAS, W. J., KARASOV, W. H., and GUGLIELMO, C. G. 1993b. Conyferyl benzoate in Quaking Aspen Populus tremuloides: Its effect on energy and nitrogen digestion and retention in Ruffed Grouse Bonasa umbellus. Physiol. Zool. 66:580–601.Google Scholar
  23. JOHNSON, P. B., ABDURAHMAN, E. M., TIAM, E. A., ABDU-AGUYE, I., and HUSSAINI, I. M. 1999. Euphorbia hirtaleaf extracts increase urine output and electrolytes in rats. J. Ethnopharmacol. 65:63–69.Google Scholar
  24. KARASOV, W. H. 1989. Nutritional bottleneck in a herbivore, the desert woodrat Neotoma lepida. Physiol. Zool. 62:1351–1382.Google Scholar
  25. KELLETT, G. L., BARKER, E. D., BEACH, N. L., and DEMPSTER, J. A. 1993. Effect of nordihydroguaiaretic acid on glucose absorption, metabolism and sodium plus potassium-ATPase activity in rat jejunum. Biochem. Pharmacol. 45:1932–1935.Google Scholar
  26. LINDROTH, R. L., BATZLI, G. O., and AVILDSEN, S. L. 1984. Plant phenolics as chemical defenses: Effects of natural phenolics on survival and growth of prairie voles (Microtusochrogaster). J. Chem. Ecol. 10:229–244.Google Scholar
  27. MABRY, T. J., DIFEO, D. R. Jr., SAKAKIBARA, M., BOHNSTEDT, C. F. Jr., and SEIGLER, D. 1977. The natural products chemistry of Larrea, pp. 115–134, inT. J. Mabry, J. H. Hunziker, and D. R. DiFeo Jr. (eds.). Creosote Bush: Biology and Chemistry of Larrea in New World Deserts. Hutchinson and Ross, Stroudsberg, PA.Google Scholar
  28. MANGIONE, A. M., DEARING, D., and KARASOV, K. H. 2000. Interpopulation differences in tolerance to creosote bush resin in desert woodrats (Neotoma lepida). Ecology 8:2067–2076.Google Scholar
  29. MANGIONE, A. M., DEARING, D., and KARASOV,W. 2001. Detoxification in relation to toxin tolerance in desert woodrats eating creosote bush. J. Chem. Ecol. 12:2559–2578.Google Scholar
  30. MCARTHUR, C., SANSON, G. D., and BEAL, A. M. 1995. Salivary proline-rich proteins in mammals: Roles in oral homeostasis and counteracting dietary tannin. J. Chem. Ecol. 21:663–691.Google Scholar
  31. MEYER, M. W. and KARASOV, W. H. 1989. Antiherbivore chemistry of Larrea tridentata: Effects on woodrat (Neotoma lepida) feeding and nutrition. Ecology 70:953–961.Google Scholar
  32. NAGY, K. A., SHOWMAKER, V. H., and COSTA, W. R. 1976.Water, electrolyte and nitrogen budgets of jackrabbits in the Mojave Desert. Physiol. Zool. 49:351–353.Google Scholar
  33. NAVARRO, E., ALONSO, J., RODRIGUEZ, R., TRUJILLO, J., and BOADA, J. 1994. Diuretic action of an aqueous ex-tract of Lepidium latifolium L. J. Ethnopharmacol. 41:65–69.Google Scholar
  34. PRICE, M. L., HAGERMAN, A. E., and BUTLER, L. C. 1980. Tannin in sorghum grain: Effect of cooking on chemical assays and on antinutritional properties in rats. Nut. Rep. Int. 21:761–767.Google Scholar
  35. REMINGTON, T. E. 1990. Food Selection and Nutritional Ecology of Blue Grouse During Winter. PhD dissertation, University of Wisconsin, Madison.Google Scholar
  36. RHOADES, D. F. 1977. The antiherbivore chemistry of Larrea. pp. 135–175, inT. J. Mabry, J. H. Hunziker, and D. R. DiFeo Jr. (eds.). Creosote Bush: Biology and Chemistry of Larrea in New World Deserts. Hutchinson and Ross, Stroudsberg, PA.Google Scholar
  37. ROBBINS, C. T., HANLEY, T. A., HAGERMAN, A. E., HJELJORD, O., BAKER, D. L., SCHWARTZ, C. C., and MAUTZ, W. W. 1987a. Role of tannins in defending plants against ruminants: Reduction in protein availability. Ecology 68:98–107.Google Scholar
  38. ROBBINS, C. T., MOLE, S., HAGERMAN, A. E., and HANLEY, A. 1987b. Role of tannins in defending plants against ruminants: Reduction in dry matter digestion? Ecology 68:1606–1615.Google Scholar
  39. ROBBINS, C. T., HAGERMAN, A. E., AUSTIN, P. J., MCARTHUR, C., and HANLEY, T. A. 1991. Variation in mammalian physiological responses to a condensed tannin and its ecological implication. J. Mammal.72:480–486.Google Scholar
  40. ROBBINS, C. T. 1993. Wildlife Feeding and Nutrition. Academic Press, San Diego, CA.Google Scholar
  41. SCHMIDT-NIELSEN, K. 1979. The pack rat. A desert rodent in need of water, pp. 143–149, inDesert Animals. Physiological Problems of Heat and Water. Dover, New York.Google Scholar
  42. SHEIKH, N. M., PHILEN, R. M., and LOVE, L. A. 1997. Chaparral-associated hepatotoxicity. Arch Internal Med. 157:913–919.Google Scholar
  43. SILVER, W. L. 1987. The common chemical sense, pp. 65–87, inT. E. Finger and W. L. Silver (eds.). Neurobiology of Taste and Smell. Wiley, New York.Google Scholar
  44. SILVERSTEIN, L. J., SWANSON, B. G., and MOFFETT, D. F. 1996. Procyanidin from black beans (Phaseolus vulgaris) inhibits nutrient and electrolyte absorption in isolated rat ileum and induces secretion of chloride ion. J. Nutr. 126:1688–1695.Google Scholar
  45. SWEENEY, T. E. and BEUCHAT, C. A. 1993. Limitations of methods of osmometry measuring the osmolality of biological-fluids. Am. J. Physiol. 264:R469–R480.Google Scholar
  46. TIMMERMANN, B. N. 1977. Practical uses of Larrea, pp. 252–276, inT. J. Mabry, J. H. Hunziker, and D. R. DiFeo Jr. (eds.). Creosote Bush: Biology and Chemistry of Larreain New World Deserts. Hutchinson and Ross, Stroudsberg, PA.Google Scholar
  47. WILKINSON, L. 1992. SYSTAT for Windows: Statistics, Version 5.03. Edition Systat, Evaston, IL.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Antonio M. Mangione
    • 1
    • 2
    Email author
  • M. Denise Dearing
    • 3
  • William H. Karasov
    • 2
  1. 1.Departamento de Bioquímica y Ciencias BiológicasUniversidad Nacional de San LuisSan LuisArgentina
  2. 2.Department of Wildlife EcologyUniversity of WisconsinMadisonUSA
  3. 3.Biology DepartmentUniversity of UtahUSA

Personalised recommendations