Skip to main content
Log in

Impact of 10 Dietary Sterols on Growth and Reproduction of Daphnia galeata

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

In crustaceans, cholesterol is anEssential nutrient, which they must directly obtain from their food or by bioconversion from other dietary sterols. Eukaryotic phytoplankton contain a great variety of sterols that differ from cholesterol in having additional substituents or different positions and/or number of double bonds in the side chain or in the sterol nucleus. In this study, we investigated to what extent these structural features affect the growth and reproduction of Daphnia galeata in standardized growth experiments with the cyanobacterium Synechococcus elongatus supplemented with single sterols as food source. The results indicated that Δ5 (sitosterol, stigmasterol,Desmosterol) and Δ5,7 (7-dehydrocholesterol, ergosterol) sterols meet the nutritional requirements of the daphnids, while the Δ7 sterol lathosterol supports somatic growth and reproduction to a significantly lower extent than cholesterol. Dihydrocholesterol (Δ0) and lanosterol (Δ8) did not improve the growth of D. galeata, and growth was adversely affected by the Δ4 sterol allocholesterol. Sterols seem to differ in their allocation to somatic growth and reproduction. Thus, structural differences of dietary sterols have pronounced effects on life-history traits of D. galeata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlgren, G., Gustafsson, I. B., and Boberg, M. 1992. Fatty acid content and chemical composition of freshwater microalgae. J. Phycol. 28:37–50.

    Google Scholar 

  • Ahlgren, G., Lundstedt, L., Brett, M. T., and Forsberg, C. 1990. Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters. J. Plankton Res. 12:809–818.

    Google Scholar 

  • Akihisa, T., Hori, T., Suzuki, H., Sakoh, T., Yokota, T., and Tamura, T. 1992. 24β-Methyl-5α-cholest-9-11-en-3β-ol two 24β-alkyl-δ-5-7-9-11-sterols and other 24β-alkylsterols from Chlorella vulgaris. Phytochemistry 31:1769–1772.

    Google Scholar 

  • Arts, M. T., Evans, M. S., and Robarts, R. D. 1992. Seasonal patterns of total and energy reserve lipids of dominant zooplanktonic crustaceans from a hyper-eutrophic lake. Oecologia 90:560–571.

    Google Scholar 

  • Becker, C. and Boersma, M. 2003. Resource quality effects on life histories of Daphnia. Limnol. Oceanogr. 48:700–706.

    Google Scholar 

  • Behmer, S. T. and Elias, D. O. 2000. Sterol metabolic constraints as a factor contributing to the maintenance of diet mixing in grasshoppers (Orthoptera:Acrididae). Physiol. Biochem. Zool. 73:219–230.

    Google Scholar 

  • Behmer, S. T. and Grebenok, R. J. 1998. Impact of dietary sterols on life-history traits of a caterpillar. Physiol. Entomol. 23:165–175.

    Google Scholar 

  • Cobelas, M. A. and Lechardo, J. Z. 1988. Lipids in microalgae. A review I. Biochemistry. Grasas y Aceites 40:118–145.

    Google Scholar 

  • De Lange, H. J. and Arts, M. T. 1999. Seston composition and the potential for Daphnia growth. Aquatic Ecol. 33:387–398.

    Google Scholar 

  • DeMott, W. R. and Müller-Navarra, D. C. 1997. The importance of highly unsaturated fatty acids in zooplankton nutrition:evidence from experiments with Daphnia, a cyanobacterium and lipid emulsions. Freshwater Biol. 38:649–664.

    Google Scholar 

  • Elser, J., Hayakawa, K., and Urabe, J. 2001. Nutrient limitation reduces food quality for zooplankton: Daphnia response to seston phosphorus enrichment. Ecology 82:898–903.

    Google Scholar 

  • Goad, L. J. 1981. Sterol biosynthesis and metabolism in marine invertebrates. Pure Appl. Chem. 51:837–852.

    Google Scholar 

  • Grieneisen, M. 1994. Recent advances in our knowledge of ecdysteroid biosynthesis in insects and crustaceans. Insect Biochem. Mol. 24:115–132.

    Google Scholar 

  • Hai, T., Schneider, B., Schmidt, J., and Adam, G. 1996. Sterols and triterpenoids from the cyanobacterium Anabaena hallensis. Phytochemistry 41:1083–1084.

    Google Scholar 

  • Harrison, K. E. 1990. The role of nutrition in maturation, reproduction and embryonicDevelopment ofDecapod crustaceans:A review. J. Shellfish Res. 9:1–28.

    Google Scholar 

  • Harvey, H. R., Eglinton, G., O`hara, S. C. M., and Corner, E. D. S. 1987. Biotransformation and assimilation of dietary lipids by Calanus feeding on a dinoflagellate. Geochim. Cosmochim. Acta 51:3031–3040.

    Google Scholar 

  • Ikekawa, N. 1985. Structures, biosynthesis and function of sterols in invertebrates, pp. 199–230, in H., Danielsson and J., Sjovall (eds.). Sterols and Bile Acids. Elsevier/North Holland Biomedical, Amsterdam.

    Google Scholar 

  • Jüttner, F., Leonhardt, J., and Möhren, S. 1983. Environmental factors affecting the formation of mesityloxid, dimethylallylic alcohol and other volatile compounds excreted by Anabaena cylindrica. J. Gen. Microbiol. 129:407–412.

    Google Scholar 

  • Klein Breteler, W. C. M., Schogt, N., Baas, M., Schouten, S., and Kraay, G. W. 1999. Trophic upgrading of food quality by protozoans enhancing copepod growth: Role ofEssential lipids. Mar. Biol. 135:191–198.

    Google Scholar 

  • Lachaise, F., Carpentier, G., Somme, G., Colardeau, J., and Beydon, P. 1989. Ecdysteroid synthesis by crab Y-organs. J. Exp. Zool. 252:283–292.

    Google Scholar 

  • Lampert, W. 1977a. Studies on the carbon balance of Daphnia pulex as related to environmental conditions. I. Methodological problems of the use of 14C for the measurement of carbon assimilation. Arch. Hydrobiol. Suppl. 48:287–309.

    Google Scholar 

  • Lampert, W. 1977b. Studies on the carbon balance of Daphnia pulex as related to environmental conditions. II. TheDependence of carbon assimilation on animal size, temperature, food concentration and diet species. Arch. Hydrobiol. Suppl. 48:310–335.

    Google Scholar 

  • Lampert, W. 1981a. Toxicity of the blue-green Microcystis aeruginosa: EffectiveDefense mechanism against grazing pressure by Daphnia. Verh. Int. Verein. Limnol. 21:1436–1440.

    Google Scholar 

  • Lampert, W. 1981b. Inhibitory and toxic effects of blue-green algae on Daphnia. Rev. Gesamten Hydrobiol. 66:285–298.

    Google Scholar 

  • Lampert, W. and Trubetskova, I. 1996. Juvenile growth rate as a measure of fitness in Daphnia. Funct. Ecol. 10:631–635.

    Google Scholar 

  • Müller-Navarra, D. C. 1995. Evidence that a highly unsaturated fatty acid limits Daphnia growth in nature. Arch. Hydrobiol. 132:297–307.

    Google Scholar 

  • Müller-Navarra, D. C., Brett, M., Liston, A. M., and Goldman, C. R. 2000. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403:74–77.

    Google Scholar 

  • Nes, W. R. and McKean, M. L. 1977. Biochemistry of Steroids and Other Isopentenoids. University Park Press, Baltimore.

    Google Scholar 

  • Petkov, G. D. and Kim, D. D. 1999. Sterols of the green alga Coelastrum. Algolog. Stud. 130:89–92.

    Google Scholar 

  • Piironen, V., Lindsay, D., Miettinen, T., Toivo, J., and Lampi, A. M. 2000. Plant sterols: Biosynthesis, biological function and their importance to human nutrition. J. Sci. Food Agric. 80:939–966.

    Google Scholar 

  • Porter, K. G. and McDonough, R. 1984. The energetic cost of response to blue-green algal filaments by cladocerans. Limnol. Oceanogr. 29:365–369.

    Google Scholar 

  • Prahl, F. G., Eglinton, G., Corner, E. D. S., O`hara, S. C. M., and Forsberg, T. E. V. 1984. Changes in plant lipids during passage through the gut of Calanus. J. Mar. Biol. Ass. U.K. 64:317–334.

    Google Scholar 

  • Rees, H. H. 1985. Biosynthesis of ecdysone, pp. 249–293, in G. A., Kerkut and L. I., Gilbert (eds.). Comprehensive Insect Physiology, Biochemistry and Pharmacology. Pergamon, New York.

    Google Scholar 

  • Rudolph, P. and Spaziani, E. 1992. Formation of ecdysteroids by Y-organs of the crab, Menippe mercenaria: II. Incorporation of cholesterol into 7-dehydrocholesterol and secretion products in vitro. Gen. Comp. Endocr. 88:235–242.

    Google Scholar 

  • Rudolph, P., Spaziani, E., and Wang, W. 1992. Formation of ecdysteroids by Y-organs of the crab, Menippe mercenaria: I. Biosynthesis of 7-dehydrocholesterol in vivo. Gen. Comp. Endocr. 88:224–234.

    Google Scholar 

  • Stich, H.-B. and Lampert, W. 1984. Growth and reproduction of migrating and non-migrating Daphnia species under simulated food and temperature conditions of diurnal vertical migration. Oecologia 61:192–196.

    Google Scholar 

  • Svoboda, J. A. and Thompson, M. J. 1985. Steroids, pp. 137–175, in G. A., Kerkut and L. I., Gilbert (eds.). Comprehensive Insect Physiology, Biochemistry and Pharmacology. Pergamon, New York.

    Google Scholar 

  • Teshima, S. 1971. Bioconversion of β-sitosterol and 24-methylcholesterol to cholesterol in marine crustacea. Comp. Biochem. Physiol. B 39:815–822.

    Google Scholar 

  • Teshima, S. and Kanazawa, A. 1971a. Sterol compositions of marine crustaceans. Bull. Jpn. Soc. Sci. Fish. 37:63–67.

    Google Scholar 

  • Teshima, S. and Kanazawa, A. 1971b. Bioconversion of the dietary ergosterol to cholesterol in Artemia salina. Comp. Biochem. Physiol. B 38:603–607.

    Google Scholar 

  • Teshima, S. and Kanazawa, A. 1973. Metabolism ofDesmosterol in the prawn, Penaeus japonicus. Mem. Fac. Fish. Kagoshima Univ. 22:15–19.

    Google Scholar 

  • Teshima, S., Kanazawa, A., and Sasada, H. 1983. Nutritional value of dietary cholesterol and other sterols to larval prawn, Penaeus japonicus Bate. Aquaculture 31:159–167.

    Google Scholar 

  • Urabe, J. and Sterner, R. W. 2001. Contrasting effects of different types of resourceDepletion on life-history traits in Daphnia. Funct. Ecol. 15:165–174.

    Google Scholar 

  • Volkman, J. K. 2003. Sterols in microorganisms. Appl. Microbiol. Biotech. 60:495–506.

    Google Scholar 

  • Von Elert, E. 2002. Determination of limiting polyunsaturated fatty acids in Daphnia galeata using a new method to enrich food algae with single fatty acids. Limnol. Oceanogr. 47:1764–1773.

    Google Scholar 

  • Von Elert, E., Martin-Creuzburg, D., and Le Coz, J. R. 2003. Absence of sterols constrains carbon transfer between cyanobacteria and a freshwater herbivore (Daphnia galeata. Proc. R. Soc. Lond. B Biol. 270:1209–1214.

    Google Scholar 

  • Von Elert, E. and Wolffrom, T. 2001. Supplementation of cyanobacterial food with polyunsaturated fatty acids does not improve growth of Daphnia. Limnol. Oceanogr. 46:1552–1558.

    Google Scholar 

  • Wacker, A. and Von Elert, E. 2001. Polyunsaturated fatty acids: Evidence for non-substitutable biochemical resources in Daphnia galeata. Ecology 82:2507–2520.

    Google Scholar 

  • Yasuda, S. 1973. Sterol compositions of crustaceans. I. Marine and fresh-waterDecapods. Comp. Biochem. Physiol. B 44:41–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Martin-Creuzburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin-Creuzburg, D., Elert, E.V. Impact of 10 Dietary Sterols on Growth and Reproduction of Daphnia galeata . J Chem Ecol 30, 483–500 (2004). https://doi.org/10.1023/B:JOEC.0000018624.94689.95

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOEC.0000018624.94689.95

Navigation