Journal of Chemical Ecology

, Volume 23, Issue 11, pp 2547–2554 | Cite as

Sex Pheromone Stereochemistry and Purity Affect Field Catches of Male Aphids

  • Jim Hardie
  • Lynn Peace
  • John A. Pickett
  • Diane W. M. Smiley
  • J. Robert Storer
  • Lester J. Wadhams
Article

Abstract

Male blackberry-cereal aphids, Sitobion fragariae (Walker), were caught in the ield by water traps releasing synthetic (4aS, 7S, 7aR)-nepetalactone, the major sex pheromone component. The presence of the enantiomer (4aR,7R,7aS)-nepetalactone reduced catches and a plant-extracted (4aS,7S,7aR)-nepetalactone was less effective than the 99% (7S)-lactone. A more extensive trial with the bird cherry-oat aphid, Rhopalosiphum padi, involving the pheromone comprising the stereochemically related (4aS,7S,7aR)-nepetalactol showed a similar trend. The (7R)-isomer caught fewer males than the (7S)-isomer, but in this case the addition of high-purity (7S)-lactol to make a 50% blend caught as many males as pure (7S)-lactol. With plant-derived lactol, further purification did not significantly increase the catch. It is suggested that trace compounds associated with reduced enantiomeric purity in terms of the (7S)-configuration or from plant sources reduce activity of the sex pheromone components. Male damson-hop aphids, Phorodon humuli (Schrank), were also caught in the synthetic lactol traps, and it is suggested that this is due to traces of the (4aR,7S,7aS)-nepetalactols, which comprise the sex pheromone for this species. The significance for aphid chemical ecology studies and pest control strategies is discussed.

Aphid sex pheromone stereochemistry (4aS,7S,7aR)-nepetalactone (4aS,7S,7aR)-nepetalactols 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. CAMPBELL, C. A. M., DAWSON, G. W., GRIFFITHS, D. C., PETTERSSON, J. PICKETT, J. A., WADHAMS, L. J., and WOODCOCK, C. M. 1990. Sex attractant pheromone of damson-hop aphid Phorodon humuli (Homoptera, Aphididae). J. Chem. Ecol. 16:3455–3465.Google Scholar
  2. CRAWLEY, M. J. 1993. GLIM for Ecologists. Blackwell Scientific Publications, Oxford.Google Scholar
  3. DAWSON, G. W., GRIFFITHS, D. C., PICKETT, J. A., SMITH, M. C., and WOODCOCK, C. M. 1984. Natural inhibition of the aphid alarm pheromone. Entomol. Exp. Appl. 36:197–199.Google Scholar
  4. DAWSON, G. W., GRIFFITHS, D. C., JANES, N. F., MUDD, A., PICKETT, J. A., WADHAMS, L. J., and WOODCOCK, C. M. 1987. Identification of an aphid sex pheromone. Nature 325:614–616.Google Scholar
  5. DAWSON, G. W., GRIFFITHS, D. C., MERRITT, L. A., MUDD, A., PICKETT, J. A., WADHAMS, L. J., and WOODCOCK, C. M. 1990. Aphid semiochemicals—a review, and recent advances on the sex pheromone. J. Chem. Ecol. 16:3019–3030.Google Scholar
  6. DAWSON, G. W., PICKETT, J. A., and SMILEY, D. W. M. 1996. The aphid sex pheromone cyclopentanoids: Synthesis in the elucidation of structure and biosynthetic pathways. Bioorg. Med. Chem. 4:351–361.Google Scholar
  7. EISENBRAUN, E. J., BROWNE, C. E., IRVIN-WILLIS, R. L., MC GURK, D. J., ELIEL, E. L., and HARRIS, D. L. 1980. J. Org. Chem. 45:3811–3814.Google Scholar
  8. HARDIE, J., HOLYOAK, M., NICHOLAS, J., NOTTINGHAM, S. F., PICKETT, J. A., WADHAMS, L. J., and WOODCOCK, C. M. 1990. Aphid sex pheromone components: age-dependent release by females and species-specific male response. Chemoecology 1:63–68.Google Scholar
  9. HARDIE, J., NOTTINGHAM, S. F., DAWSON, G. W., HARRINGTON, R., PICKETT, J. A., and WADHAMS, L. J. 1992. Attraction of field-flying aphid males to synthetic sex pheromone. Chemoecology 3:113–117.Google Scholar
  10. HARDIE, J., STORER, J. R., NOTTINGHAM, S. F., PEACE, L., HARRINGTON, R., MERRITT, L. A., WADHAMS, L. J., and WOOD, D. K. 1994. The interaction of sex pheromone and plant volatiles for field attraction of male bird-cherry aphid, Rhopalosiphum padi. Brighton Crop Prot. Conf. Pests Dis. 1994:1223–1230.Google Scholar
  11. HICK, A. J., PICKETT, J. A., SMILEY, D. W. M., WADHAMS, L. J., and WOODCOCK, C. M. 1996. Higher plants as a clean source of semiochemicals and genes for their biotechnological production, pp. 220–236, in S. Wrigley, M. Hayes, R. Thomas, and E. Crystal (eds.). Phytochemical Diversity, a Source of New Industrial Products. The Royal Society of Chemistry, Cambridge.Google Scholar
  12. MARSH, D. 1972. Sex pheromone in the aphid Megouru viciae. Nature 238:31–32.Google Scholar
  13. MARSH, D. 1975. Responses of male aphids to the female sex pheromone in Megoura viciae Buckton. J. Entomol. (A) 50:43–64.Google Scholar
  14. PETTERSSON, J. 1970. An aphid sex attractant. I. Biological studies. Entomol. Scand. 1:63–73.Google Scholar
  15. PETTERSSON, J. 1971. An aphid sex attractant. II. Histological, ethological and comparative studies. Entomol. Scand. 2:81–93.Google Scholar
  16. PICKETT, J. A., WADHAMS, L. J., and WOODCOCK, C. M. 1994. Attempts to control aphid pests by integrated use of semiochemicals. Brighton Crop Prot. Conf. Peats Dis. 1994:1239–1246.Google Scholar
  17. SCHREIBER, S. L., MEYERS, H. V., and WIBERG, K. B. 1986. Stereochemistry of the intramolecular enamine/enal (enone) cycloaddition reaction and subsequent transformations. J. Am. Chem. Soc. 108:8274–8277.Google Scholar
  18. STEFFAN, A. W. 1987. Fern-und Nahorientierung geflüugelter Gynoparae und Sexualis-Männchen bei Blattläusen (Homoptera: Aphidinea: Aphididae). Entomol. Gen. 12:235–258.Google Scholar
  19. TAMAKI, G., BUTT, B. A., and LANDIS, B. J. 1970. Arrest and aggregation of male Myzus persicae (Hemiptera: Aphididae). Ann. Entomol. Soc. Am. 63:955–960.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Jim Hardie
    • 1
  • Lynn Peace
    • 1
  • John A. Pickett
    • 2
  • Diane W. M. Smiley
    • 2
  • J. Robert Storer
    • 1
  • Lester J. Wadhams
    • 2
  1. 1.Department of BiologyAphid Biology GroupAscot, BerkshireUK
  2. 2.IACR-Rothamsted, HarpendenHertfordshireUK

Personalised recommendations