Skip to main content
Log in

Bioactive Steroids and Triterpenes from Melilotus messanensis and Their Allelopathic Potential

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The aerial parts of Melilotus messanensis (sweet clover) afforded, from moderately and polar bioactive fractions, 11 triterpenes and five steroids. A series of aqueous solutions at 10−4–10−9 M of five steroids and nine triterpenes was monitored to test their effects on germination and growth of the monocots Hordeum vulgare and Allium cepa, and the dicots Lactuca sativa (var. nigra and var. romana) and Lycopersicon esculentum. An important stimulatory effect on H. vulgare germination (between 40% and 80% for almost all tested compounds) was observed. Some considerations about the ecological role of triterpenes on M. messanensis are made. In addition to known lupane triterpenes (platanic acid and 3β,28,30-lup-20(29)-enetriol), oleanane triterpenes (soyasapogenol B, soyasapogenol G, and messagenolide), a gammacerane triterpene (gammacer-16-en-3-one), five new lupane triterpenes (messagenic acids A–E: (27-cis-4-hydroxycinnamoyloxy)-betulinic acid; 27-(trans-4-hydroxycinnamoyloxy)betulinic acid; 20(S)-3β-hydroxy-29-oxolupan-28-oic acid; 3β,30-dihydroxylup-20(29)-en-28-oic acid; and 3β,20-dihydroxylup-18(19)-en-28-oic acid, respectively), and sterols (β-sitosterol, ergosterol peroxide, 7α-hydroxysitosterol, 7β-hydroxysitosterol, and 7-oxositosterol) were isolated and chemically characterized. Their structures and stereochemistry were elucidated by spectroscopic methods (one- and two-dimensional 1H and 13C NMR, IR, MS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • APLIN, R. T., HALSALL, T. G., and NORIN, T. 1963. The chemistry of triterpenes and related compounds (XLIII). The constituents of the bark of Platanus hybrida and the structure of platanic acid. J. Chem. Soc. 85:3269–3273.

    Google Scholar 

  • BAXTER, R. L., PRICE, K. R., and FENWICK, R. 1990. Sapogenin structure: analysis of the 13C and 1H NMR spectra of soyasapogenol. J. Nat. Prod. 53:298–302.

    Google Scholar 

  • BRADOW, J. M. 1985. Germination regulation by Amaranthus palmeri and Ambrosia artemisiifolia, pp. 285–300, in A. C. Thompson (ed.). The Chemistry of Allelopathy, Vol 268, ACS Symposium Series. American Chemical Society, Washington, DC.

    Google Scholar 

  • BUDZIKIEWICZ, H., WILSON, J. M., and DJERASSI, C. 1963. Mass spectrometry in structural and stereochemical problems. XXXII. Pentacyclic triterpenes. J. Am. Chem. Soc. 85:3688–3699.

    Google Scholar 

  • CASTELLANO, D. 1977. In search of a standard laboratory allelopathic bioassay. MS dissertation. University of Cádiz, Puerto Real, Cádiz, Spain.

  • DELLA GRECA, M., MONACO, P., and PREVITERA, L. 1990a. Stigmasterols from Typha latifolia. J. Nat. Prod. 53:1430–1435.

    Google Scholar 

  • DELLA GRECA, M., MANGONI, L., MOLINARO, A., MONACO, P., and PREVITERA, L. 1990b. (20S)-4α-methylenecholest-7-en-3β-ol, an allelopathic sterol from Typha latifolia. Phytochemistry 29:1797–1798.

    Google Scholar 

  • DURRANI, A. A., and IKRAM, M. 1966. Melilotus indica. Pak. J. Sci. Ind. Res. 9:173–174.

    Google Scholar 

  • EINHELLIG, F. A. 1986. Mechanisms and modes of action of allelochemicals, pp. 171–188, in A. R. Putnam and C.-S. Tang (eds.). The Science of Allelopathy. John Wiley & Sons, New York.

    Google Scholar 

  • EINHELLIG, F. A. 1987. Interactions among allelochemicals and other stress factors of the plant environment, pp. 343–357, in G. R. Waller (ed.). Allelochemicals: Role in Agriculture and Forestry, Vol 330, ACS Symposium Series. American Chemical Society, Washington D.C.

    Google Scholar 

  • FIJIOKA, T., KASHIWADA, Y., KILKUSKIE, R. E., COSENTINO, L. M., BALLAS, L. M., JIANG, J. B., JAUZEN, W. P., CHEN, I., and LEE, K. 1994. Anti-AIDS agents, 11. Betulinic acid and platanic acid as anti-HIV principles from Syzigium claviflorum, and the anti-HIV activity of structurally related triterpenoids. J. Nat. Prod. 57:243–247.

    Google Scholar 

  • GONZÁLEZ, A. G., JIMÉNEZ, I. A., and RAVELO, A. G. 1992. Triterpenes from Maytenus canariensis and synthesis of a derivative from betulin. Phytochemistry 31:2069–2072.

    Google Scholar 

  • GUERRIERO, A., D'AMBROSIO, M., and PIETRA, F. 1993. Pteridines, sterols, and indole derivatives from the lithistid sponge Corallistes undulatos of the coral sea. J. Nat. Prod. 56:1962–1970.

    Google Scholar 

  • GUNATILAKA, A. A. L., GOPICHAND, Y., SCHMITZ, F. J., and DJERASSI, C. 1981. Minor and trace sterols in marine invertebrates. 26. Isolation and structure elucidation of nine new 5α,8α-epidioxy sterols from four marine organisms. J. Org. Chem. 46:3860–3866.

    Google Scholar 

  • HUI, W., and LI, M. 1977. Further triterpenoids from the stems of Lithocarpus polystachya. Phytochemistry 16:111–112.

    Google Scholar 

  • KANG, S. S., LIM, C. H., LEE, S. Y., and SOOK, Y. 1987. Soyasapogenols B and E from Melilotus officinalis. Arch. Pharmacol. Res. 10:9–13.

    Google Scholar 

  • KASHIWADA, Y., ZHANG, D., CHEN, Y., CHENG, C., CHEN, H., CHANG, H., CHANG, J., and LEE, K. 1993. Antitumor agents, 145. Cytotoxic asprellic acids A and C and asprellic acid B, new p-cumaroyl triterpenes, from Ilex asprella. J. Nat. Prod. 56:2077–2082.

    Google Scholar 

  • KHAFAGY, S. M., SABRI, N. N., and ABOU DONIA, A. H. 1980. Pharmacognostical study of Melilotus indicus (L.) All var. Tommasinii Jord. Egypt J. Pharm. Sci. 19:293–300.

    Google Scholar 

  • MACÍAS, F. A., GALINDO, J. C. G., MASSANET, G. M., RODRÍGUEZ-LUÍS, F., and ZUBÍA, E. 1993. Allelochemicals from Pilocarpus goudotianus leaves. J. Chem. Ecol. 19:1371–1379.

    Google Scholar 

  • MACÍAS, F. A., SIMONET, A. M., and ESTEBAN, M. D. 1994. Potential allelopathic lupane triterpenes from bioactive fractions of Melilotus messanensis. Phytochemistry 36:1369–1379.

    Google Scholar 

  • MACÍAS, F. A., SIMONET, A. M., ESTEBAN, M. D., and GALINDO, J. C. G. 1996. Triterpenoids from Melilotus messanensis L; Soyasapogenol G, the first natural carbonate derivative. Phytochemistry 41:1573–1577.

    Google Scholar 

  • MANDAVA, N. B., SASSE, J. M., and YOPP, J. H. 1981. Brassinolide, a growth-promoting steroidal lactone. II. Activity in selected gibberellin and cytokinin bioassays. Physiol. Plant. 53:453–61.

    Google Scholar 

  • MAUGH, T. H., II. 1981. New chemicals promise larger crops. Science 212:33–34.

    Google Scholar 

  • OLESZEK, W. 1993. Allelopathic potentials of alfalfa (Medicago sativa) saponins: Their relation to antifungal and hemolytic activities. J. Chem. Ecol. 19:1063–1074.

    Google Scholar 

  • PATHAK, N. K. R., NEOGI, P., BISWAS, M., TRIPATHI, Y. C., and PAUDEY, V. B. 1988. Betulinaldehyde, an anti-tumor agent from the bark of Tectona grandis. Indian J. Pharm. Sci. 50:124–125.

    Google Scholar 

  • RASULOV, F. A., and BELYI, M. B. 1985. Chemical study of Melilotus caspius and Achillea vermicularis. Izv. Akad. Nauk Az. SSR, Ser. Biol. Nauk 2:22–24.

    Google Scholar 

  • SIDDIQUI, S., SIDDIQUI, B. S., NAEED, A., and BEGUM, S. 1992. Pentacyclic triterpenoids from the leaves of Plumeria obtusa. Phytochemistry 31:4279–4283.

    Google Scholar 

  • TCHIVOUNDA, H., KOUDOGBO, P., BESACE, Y., and CASADEVALL, E. 1990. Cylicosidic acid, a dihydroxy pentacyclic triterpene carboxylic acid from Cylicodiscus gabunensis. Phytochemistry 29:3255–3258.

    Google Scholar 

  • TSICHRITZIS, F., and JAKUPOVIC, J. 1990. Diterpenes and other constituents from Relhania species. Phytochemistry 29:3173–3187.

    Google Scholar 

  • VYSTRCIL, A., POUZAR, V., and KŘEČEK, V. 1973. Triterpenes. XXXII. Absolute configuration at C(20) in 29-substituted lupane derivatives. Coll. Czech. Chem. Commun. 38:3902–3911.

    Google Scholar 

  • WALLER, G. R., JURZYSTA, M., and THORNE, R. L. Z. 1993. Allelopathic activity of root saponins from alfalfa (Medicago sativa L.) on weeds and wheat. Bot. Bull Acad. Sin. 34:1–11.

    Google Scholar 

  • WANG, H. and FUJIMOTO, Y. 1993. Triterpene esters from Eucalyptus fereticornis. Phytochemistry 33:151–153.

    Google Scholar 

  • WEIDENHAMER, J. D., MACÍAS, F. A., FISCHER, N. H., and WILLIAMSON, G. B. 1990. Just how insoluble are monoterpenes? J. Chem. Ecol. 19:1799–1807.

    Google Scholar 

  • WENKERT, E., BADDELEY, G. V., BURFITT, I. R., and MORENO, L. N. 1978. Carbon-13 nuclear magnetic resonance spectroscopy of naturally-occurring substances. LVII. Triterpenes related to lupane and hopane. Org. Mag. Res. 11:337–343.

    Google Scholar 

  • WYMAN-SIMPSON, C. L., WALLER, G. R., JURZYSTA, M., MC PHERSON, J. D., and YOUNG, C. C. 1991. Biological activity and chemical isolation of root saponins of six cultivars of alfalfa (Medicago sativa L.). Plant Soil 135:83–94.

    Google Scholar 

  • YOPP, J. H., MANDAVA, N. B., and SASSE, J. M. 1981. Brasinolide, a growth-promoting steroidal lactone. I. Activity in selected auxin bioassays. Physiol. Plant. 53:445–452.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macías, F.A., Simonet, A.M. & Galindo, J.C.G. Bioactive Steroids and Triterpenes from Melilotus messanensis and Their Allelopathic Potential. J Chem Ecol 23, 1781–1803 (1997). https://doi.org/10.1023/B:JOEC.0000006451.19649.a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOEC.0000006451.19649.a0

Navigation