Skip to main content
Log in

Effect of Substituent and Ring Changes in Naturally Occurring Naphthoquinones on the Feeding Response of Larvae of the Mexican Bean Beetle, Epilachna varivestis

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Behavioral evaluation of the antifeedant effect of 10 naturally occurring 1,4-naphthoquinones on larvae of the Mexican bean beetle, Epilachna varivestis Mulsant, was undertaken concurrently with that of a series of synthetic analogs and model compounds in order to assess structure–activity relationships. Plumbagin, 1,4-naphthoquinone, juglone, menadione, and naphthazarin, which were found to be active at 0.3% concentrations, were also bioassayed at 0.1, 0.05, and 0.01% at which concentration 1,4-naphthoquinone still retained some activity. The model studies suggest that two structural features might be operative independently against E. varivestis: one consisting of a properly substituted naphthoquinone moiety and the other requiring a benzo- or naphthohydroquinone. Within the naphthoquinone group, the relative activity is determined by a substituent effect which is the outcome of a complex interplay of electronic, steric, electrochemical, and positional requirements. Among the model compounds, 2-chloro-3-amino-1,4-naphthoquinone and α-naphthylamine displayed appreciable activity even at 0.01% The results should enable selection of plant sources for naphthoquinones possessing larval inhibition properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • AMBROGI, V., ARTINI, D., DE CARNERI, I., CASTELLINO, S., DRADI, E., LOGEMANN, W., MEINARDI, G., DI SOMMA, M., TOSOLINI, G., and VECCHI, E. 1970. Studies on the antibacterial and antifungal properties of 1,4-naphthoquinones. Br. J. Pharmac. 40:871–880.

    Google Scholar 

  • ASCHER, K. R. S., and NISSIM, S. 1965. Quantitative aspects of antifeeding: Comparing “antifeedants” by assay with P. litura. Int. Pest Control 7:21–23.

    Google Scholar 

  • ASCHER, K. R. S., ELIYAHU, M., GLOTTER, E., GOLDMAN, A., KIRSON, I., ABRAHAM, A., JACOBSON, M., and SCHMUTTERER, H. 1987. The antifeedant effect of some new withanolides on three insect species, Spodoptera littoralis, Epilachna varivestis and Tribolium castaneum. Phytoparasitica 15:15–29.

    Google Scholar 

  • CLARK, N. G. 1985. The fungicidal activity of substituted 1,4-naphthoquinones. III. Amino, anilino and acylamino derivatives. Pestic. Sci. 16:23–32.

    Google Scholar 

  • CURRIE, D. J., and HOLMES, H. L. 1966. Polarographic half-wave potentials of some 1,4-naphthoquinones. Can. J. Chem. 44:1027–1029.

    Google Scholar 

  • DESMARCHELIER, J. M., and FUKUTO, T. R. 1974. Toxicological effects produced by some 1,3-benzodioxoles, catechols, and quinones in Culex mosquito larvae. J. Econ. Entomol. 67:153–158.

    Google Scholar 

  • DETTNER, K. 1993. Dabbing and shooting of benzo-and naphthoquinone secretions: defensive strategies of bark-inhabiting aleocharine (Col.: Staphylinidae) and tenebrionid (Col.: Tenebrionidae) beetle larvae. J. Chem. Ecol. 19:1337–1354.

    Google Scholar 

  • FIELDGATE, D. M., and WOODCOCK, D. 1973. Fungicidal activity and chemical constitution. XX. The activity of substituted 1,4-naphthohydroquinone esters and substituted 1,4-naphthoquinones against powdery mildews. Pestic. Sci. 4:193–200.

    Google Scholar 

  • FIESER, L. F. 1948. Naphthoquinones antimalarials. III. Diene synthesis of 1,4-naphthoquinones. J. Am. Chem. Soc. 70:3165–3174.

    Google Scholar 

  • FIESER, L. F., and FIESER, M. 1935. The reduction potentials of various naphthoquinones. J. Am. Chem. Soc. 57:491–494.

    Google Scholar 

  • GUJAR, G. T., and MEHROTRA, K. N. 1988. Toxicity and morphogenetic effects of plumbagin on Dysdercus koenigii F. (Het., Pyrrhocoridae). J. Appl. Entomol. 105:466–470.

    Google Scholar 

  • HASSANALI, A., and LWANDE, W. 1989. Antipest secondary metabolites from African plants, pp. 78–94, in J. T. Arnason, B. J. R. Philogène, and P. Morand (eds.). Insecticides of Plant Origin, ACS Symposium Series 387. Washington, DC, American Chemical Society.

    Google Scholar 

  • HEDIN, P. A., COLLUM, D. H., LANGHANS, V. E., and GRAVES, C. H. 1980. Distribution of juglone and related compounds in pecan and their effect on Fusicladium effusum. J. Agr. Food Chem. 28:340–342.

    Google Scholar 

  • HOLMES, H. L., CURRIE, D. J., MALTMAN, J. R., SILVER, R. F., LOUGH, C. E., and LESKY, G. J. 1964. Evidence for the mode of chemical action of 1,4-naphthoquinones in bacteriostasis. Chemiotherapia 9:241–247.

    Google Scholar 

  • HOWLAND, J. L. 1963. Uncoupling and inhibition of oxidative phosphorylation by 2-hydroxy-3-alkyl-1,4-naphthoquinones. Biochim. Biophys. Acta 77:659–662.

    Google Scholar 

  • JACOBSEN, N., and PEDERSEN, L.-E. K. 1986. Activity of 2-(1-alkenyl)-3-hydroxy-1,4-naphthoquinones and related compounds against Musca domestica. Pestic. Sci. 17:511–516.

    Google Scholar 

  • JOSHI, N. K., and SEHNAL, F. 1989. Inhibition of ecdysteroid production by plumbagin in Dysdercus cingulatus. J. Insect Physiol. 35:737–741.

    Google Scholar 

  • KOGAN, M. 1977. Epilachna varivestis Muls., pp. 391–394, in J. Kranz, H. Schmutterer, and W. Koch (eds.). Diseases, Pests and Weeds in Tropical Crops. Paul Parey, Berlin.

    Google Scholar 

  • KUBO, I., UCHIDA, M., and KLOCKE, J. A. 1983. An insect ecdysis inhibitor from the African medicinal plant Plumbago capensis (Plumbaginaceae): A naturally occurring chitin synthetase inhibitor. Agr. Biol. Chem. 47:911–913.

    Google Scholar 

  • MARMOR, S. 1963. The epoxidation of certain α,β-unsaturated ketones with sodium hypochlorite. J. Org. Chem. 28:250–251.

    Google Scholar 

  • MARSTON, A., MSONTHI, J. D., and HOSTETTMANN, K. 1984. Naphthoquinones of Diospyros usambarensis; Their molluscicidal and fungicidal activities. Planta Med. 50:279–280.

    Google Scholar 

  • MITCHELL, M. J., and SMITH, S. L. 1988. Effects of the chitin synthetase inhibitor plumbagin and its 2-demethyl derivative juglone on insect ecdysone 20-monooxygenase activity. Experientia 44:990–991.

    Google Scholar 

  • MOORE, R. E., and SCHEUER, P. J. 1966. Nuclear magnetic resonance spectra of substituted naphthoquinones. Influence of substitutents on tautomerism, anisotropy, and stereochemistry in the naphthazarin system. J. Org. Chem. 31:3272–3283.

    Google Scholar 

  • MOORE, R. E., SINGH, H., CHANG, C. W. J., and SCHEUER, P. J. 1966. Sodium borohydride reduction of Spinochrome A. Removal of phenolic hydroxyls in the naphthazarin system. J. Org. Chem. 31:3638–3645.

    Google Scholar 

  • MÜLLER, W.-U., and LEISTNER, E. 1976. 1,4-Naphthoquinone, an intermediate in juglone (5-hydroxy-1,4-naphthoquinone) biosynthesis. Phytochemistry 15:407–410.

    Google Scholar 

  • NORRIS, D. M. 1969. Transduction mechanism in olfaction and gustation. Nature 222:1263–1264.

    Google Scholar 

  • NORRIS, D. M. 1986. Anti-feeding compounds, pp. 97–146, in W. S. Bowers, W. Ebing, T. R. Fukuto, D. Martin, R. Wegler, and I. Yamamoto (eds.). Chemistry of Plant Protection 1. Sterol Biosynthesis, Inhibitors and Anti-Feeding Compounds, Springer-Verlag, Berlin/Heidelberg.

    Google Scholar 

  • NORRIS, D. M. 1988. Periplaneta americana perception of phytochemical naphthoquinones as allelochemicals. J. Chem. Ecol. 14:1807–1819.

    Google Scholar 

  • NORRIS, D. M., FERKOVICH, S. M., ROZENTAL, J. M., BAKER, J. E., and BORG, T. K. 1970. Energy transduction: inhibition of cockroach feeding by naphthoquinones. Science 170:754–755.

    Google Scholar 

  • PAPAGEORGIOU, V. P. 1980. Carbon-13 NMR spectra of some naturally occurring hydroxynaphtha-quinones. Planta Med. 40:305–307.

    Google Scholar 

  • REED, D. K., JACOBSON, M., WARTHEN, J. D., JR., UEBEL, E. C., TROMLEY, N. J., JURD, L., and FREEDMAN, B. 1981. Cucumber beetle antifeedants: Laboratory screening of natural products. Tech. Bull. No. 1641, USDA-SEA, Beltsville, MD.

    Google Scholar 

  • RODDICK, J. G., RIJNENBERG, A. L., and OSMAN, S. F. 1988. Synergistic interaction between potato glycoalkaloids α-solanine and α-chaconine in relation to destabilization of cell membranes: Ecological implications. J. Chem. Ecol. 14:889–902.

    Google Scholar 

  • SANKAR, R., DEVAMANOHARAN, P. S., RAGUPATHI, G., and SHYAMALA DEVI, C. S. 1987. Antilipid peroxidative efficacy of plumbagin and menadione: An in vitro study. Curr. Sci. 56:890–892.

    Google Scholar 

  • SANKARAM, A. V. B., SRINIVASAN, T. N., and INDULKAR, A. S. 1975. Fungicidal activity of some naturally occurring naphthoquinones. Pestic. Sci. 6:165–168.

    Google Scholar 

  • SAXENA, B. P., and TIKKU, K., 1988. Exploitation of lacunae by some allelochemics in insect-plant interactions, pp. 105–122, in T. N. Ananthakrishnan and A. Raman (eds.). Dynamics of Insect-Plant Interaction. Oxford IBH, New Delhi, India.

    Google Scholar 

  • SINGH, I., OGATA, R. T., MOORE, R. E., CHANG, C. W. J., and SCHEUER, P. J. 1968. Electronic spectra of substituted naphthoquinones. Tetrahedron 24:6053–6073.

    Google Scholar 

  • SPENCER, G. F., TJARKS L. W., ENGLAND, R. E., and SEEST, E. P. 1986. The effect of naturally occurring naphthoquinones on velvetleaf (Abutilon theophrasti) germination. J. Nat. Prod. 49:530–533.

    Google Scholar 

  • THIBOLDEAUX, R. L., LINDROTH, R. L., and TRACY, J. W. 1994. Differential toxicity of juglone (5-hydroxy-1,4-naphthoquinone) and related naphthoquinones to saturniid moths. J. Chem. Ecol. 20:1631–1641.

    Google Scholar 

  • THOMSON, R. H. 1971. Naturally Occurring Quinones, 2nd ed. Academic Press, London.

    Google Scholar 

  • TRIPATHI, R. D., SRIVASTAVA, H. S., and DIXIT, S. N. 1980. Regulation of nitrate reductase, soluble and protein nitrogen by lawsone in Helminthosporium oryzae Breda de Haan. Experientia 36:960–961.

    Google Scholar 

  • VLADIMIRTSEV, I. F., and STROMBERG, A. G. 1957. Polarographic study of 2,3-derivatives of 1,4-naphthoquinones. J. Gen. Chem. USSR (Engl. transl.) 27:1110–1123.

    Google Scholar 

  • WEISSENBERG, M., KLEIN, M., MEISNER, J., and ASCHER, K. R. S. 1986. Larval growth inhibition of the spiny bollworm, Earias insulana, by some steroidal secondary plant compounds. Entomol. Exp. Appl. 42:213–217.

    Google Scholar 

  • ZUMAN, P. 1962. Quantitative treatments of substituent effects in polarography. IV. Linear free energy relationships in quinoid series. Collect. Czech. Chem. Commun. 27:2035–2057.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weissenberg, M., Meisner, J., Klein, M. et al. Effect of Substituent and Ring Changes in Naturally Occurring Naphthoquinones on the Feeding Response of Larvae of the Mexican Bean Beetle, Epilachna varivestis . J Chem Ecol 23, 3–18 (1997). https://doi.org/10.1023/B:JOEC.0000006342.51040.90

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOEC.0000006342.51040.90

Navigation