Advertisement

Journal of Cluster Science

, Volume 15, Issue 2, pp 63–90 | Cite as

Optical, Electrochemical, and Catalytic Properties of the Unsaturated Host Pd3(dppm)3(CO)2+ and Pd4(dppm)4(H)2+2 Clusters: An Overview

  • Pierre D. Harvey
  • Yves Mugnier
  • Dominique Lucas
  • David Evrard
  • Frédéric Lemaître
  • Alain Vallat
Foreword

Abstract

This paper presents an overview of the optical, photophysical, and photochemical properties including UV-visible and luminescence spectra in solution at 298 and 77 K, along with electrochemical, and catalytic behavior under reduction conditions (for both thermally and electrochemically assisted systems) of the tri- and tetranuclear Pd3(dppm)3(CO)2+ and Pd4(dppm)4(H)2+2 clusters (dppm=bis(diphenylphosphino)methane). This review is also complemented with relevant information about their syntheses, molecular and electronic structures supported from computer modeling, EHMO and DFT calculations, and their host-guest behavior with anions and neutral molecules, in relation with their observed reactivity.

palladium platinum synthesis structure host-guest electrochemistry catalysis photophysics frontier molecular orbitals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    (a) J. Tsuji, Palladium Reagents and Catalysts (Wiley, New York, 1995. (b) I. I. Moiseev and M. N. Vargaftic (1998). New J. Chem. 1217.Google Scholar
  2. 2.
    B. R. James, Homogeneous Hydrogenation (Wiley, New York, 1973.Google Scholar
  3. 3.
    B. R. James, in G. Wilkinson, F. G. Stone, and E. W. Abel (eds.), Comprehensive Organometallic Chemistry, Vol. 8, Chap. 51 (Pergamon, Oxford, 1982.Google Scholar
  4. 4.
    P. A. Chaloner, M. A. Esteruelas, F. Jóo, and L. A. Oro, Homogeneous Hydrogenation (Kluwer Academic, Dordrecht, Netherlands, 1994.Google Scholar
  5. 5.
    R. van Asselt and C. J. Elsevier (1991). J. Mol. Catal. 65, L13.Google Scholar
  6. 6.
    K. Tani, N. Ono, S. Okamoto, and F. Sato (1993). J. Chem. Soc., Chem. Commun. 386.Google Scholar
  7. 7.
    J. M. Tour and S. L. Pendalwar (1990). Tetrahedron. Lett. 31, 4719.Google Scholar
  8. 8.
    N. Suzuki, T. Tsukanaka, T. Nomoto, Y. Ayaguchi, and Y. Izawa (1983. J. Chem. Soc., Chem. Commun. 515.Google Scholar
  9. 9.
    C. Borriello, M. L. Ferrara, I. Orabona, A. Panunzi, and F. Ruffo (2000). J. Chem. Soc., Dalton Trans. 2545.Google Scholar
  10. 10.
    P. Pelagatti, A. Bacchi, M. Carcelli, M. Costa, A. Fochi, P. Ghidini, A. Leporati, M. Masi, C. Pelizzi, and G. Pelizzi (1999. J. Organomet. Chem. 583, 94.Google Scholar
  11. 11.
    E. W. Stern and P. K. Maples (1972). J. Catal. 27, 120.Google Scholar
  12. 12.
    I. I. Moiseev and M. N. Vargaftic (1998. New J. Chem. 1217.Google Scholar
  13. 13.
    R. J. Puddephatt, L. Manojlovic-Muir, and K. W. Muir (1990). Polyhedron 9, 2767.Google Scholar
  14. 14.
    P. D. Harvey (1993). J. Cluster Sci. 4, 377.Google Scholar
  15. 15.
    L. Manojlovic-Muir, K. W. Muir, B. R. Lloyd, and R. J. Puddephatt (1983). J. Chem. Soc., Chem. Commun. 1336.Google Scholar
  16. 16.
    B. R. Lloyd and R. J. Puddephatt (1984). Inorg. Chim. Acta 90, L77.Google Scholar
  17. 17.
    I. Gauthron, Y. Mugnier, K. Hierso, and P. D. Harvey (1998). New J. Chem., 237.Google Scholar
  18. 18.
    F. Lemaĉıtre, D. Lucas, K. Groison, P. Richard, Y. Mugnier, and P. D. Harvey (2003). J. Am. Chem. Soc. 125, 5511.Google Scholar
  19. 19.
    R. Provencher, K. T. Aye, M. Drouin, J. Gagnon, N. Boudreault, and P. D. Harvey (1994). Inorg. Chem. 33, 3689.Google Scholar
  20. 20.
    T. Zhang, M. Drouin, and P. D. Harvey (1996). J. Chem. Soc. Chem. Commun. 877.Google Scholar
  21. 21.
    P. D. Harvey, K. Hierso, P. Braunstein, and X. Morise (1996). Inorg. Chim. Acta 250, 337.Google Scholar
  22. 22.
    L. Manojlovic-Muir, K. W. Muir, B. R. Lloyd, and R. J. Puddephatt (1985). J. Chem. Soc., Chem. Commun. 536.Google Scholar
  23. 23.
    B. R. Lloyd, L. Manojlovic-Muir, K. W. Muir, and R. J. Puddephatt (1993). Organometallics 12, 1231.Google Scholar
  24. 24.
    P. D. Harvey, R. Provencher, J. Gagnon, T. Zhang, D. Fortin, K. Hierso, M. Drouin, and S. M. Socol (1996). Can. J. Chem. 74, 2268.Google Scholar
  25. 25.
    K. A. Connors, Binding Constants: The Measurement of Molecular Complex Stability (Wiley, New York, 1987).Google Scholar
  26. 26.
    F. A. Cotton, G. Wilkinson, and P. L. Gaus, Basic Inorganic Chemistry, 2nd edn. (Wiley, Toronto, (1993), p. 61.Google Scholar
  27. 27.
    R. Provencher and P. D. Harvey (1993). Inorg. Chem. 32, 61.Google Scholar
  28. 28.
    P. D. Harvey, S. Hubig, and T. Ziegler (1994). Inorg. Chem. 33, 3700.Google Scholar
  29. 29.
    R. Provencher and P. D. Harvey (1996). Inorg.Chem. 35, 2113.Google Scholar
  30. 30.
    R. Provencher and P. D. Harvey (1996). Inorg. Chem. 35, 2235.Google Scholar
  31. 31.
    I. Gauthron, Y. Mugnier, K. Hierso and P. D. Harvey (1997). Can. J. Chem. 75, 1182.Google Scholar
  32. 32.
    F. Lemaître, D. Brevet, D. Lucas, A. Vallat, Y. Mugnier, and P. D. Harvey (2002). Inorg. Chem. 41, 2368.Google Scholar
  33. 33.
    D. Brevet, D. Lucas, H. Cattey, F. Lemaître, Y. Mugnier, and P. D. Harvey (2001). J. Amer. Chem. Soc. 123, 4340.Google Scholar
  34. 34.
    D. H. Evans (1990). Chem. Rev. 90, 739.Google Scholar
  35. 35.
    F. Lemaî tre, D. Lucas, Y. Mugnier, and P. D. Harvey (2002). J. Org. Chem. 67, 7537.Google Scholar
  36. 36.
    D. Brevet, Y. Mugnier, F. Lemaître, D. Lucas, S. Samreth, and P. D. Harvey (2003). Inorg. Chem. 42, 4909.Google Scholar
  37. 37.
    R. U. Kirss and R. Eisenberg (1989). Inorg. Chem. 28, 3372.Google Scholar
  38. 38.
    I. Gauthron, J. Gagnon, T. Zhang, D. Rivard, D. Lucas, Y. Mugnier, and P. D. Harvey (1998). Inorg. Chem. 37, 1112.Google Scholar
  39. 39.
    D. Meilleur, D. Rivard, P. D. Harvey, I. Gauthron, D. Lucas, and Y. Mugnier (2000). Inorg. Chem. 39, 2909.Google Scholar
  40. 40.
    P. Braunstein, M. A. Luke, A. Tiripicchio, and M. Tiripicchio-Camellini (1987). Angew. Chem. 99, 802.Google Scholar
  41. 41.
    P. Braunstein, M. A. Luke, A. Tiripicchio, and M. Tiripicchio-Camellini (1988). New J. Chem. 12, 429.Google Scholar
  42. 42.
    M. Maekawa, M. Munakata, T. Kuroda-Sowa, and Y. Suenaga (1998). Anal. Sci. 14, 451.Google Scholar
  43. 43.
    M. Maekawa, M. Munakata, T. Kuroda-Sowa, and Y. Suenaga (1998). Polyhedron 17, 3657.Google Scholar
  44. 44.
    I. Bachert, P. Braunstein, E. Guillon, C. Massera, J. Rosé, A. DeCian, and J. Fischer (1999). J. Cluster Sci. 10, 445.Google Scholar
  45. 45.
    M. Maekawa, M. Munakata, T. Kuroda-Sowa, and T. Goto (1995). Inorg. Chim. Acta 239, 159.Google Scholar
  46. 46.
    D. Meilleur and P. D. Harvey (2001). Can. J. Chem. 79, 552.Google Scholar
  47. 47.
    D. Evrard, D. Meilleur, M. Drouin, Y. Mugnier, and P. D. Harvey (2002). Z. Anorg. Allg. Chem. 628, 2286.Google Scholar
  48. 48.
    B. T. Sterenberg, R. Ramachandran, and R. J. Puddephatt (2001). J. Cluster Sci. 12, 49.Google Scholar
  49. 49.
    V. V. Grushin (1996). Chem. Rev. 96, 2011.Google Scholar
  50. 50.
    D. Evrard,K. Groison,Y. Mugnier, and P. D. Harvey (2004). Inorg. Chem. 43,790.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Pierre D. Harvey
    • 1
  • Yves Mugnier
    • 2
  • Dominique Lucas
    • 2
  • David Evrard
    • 1
  • Frédéric Lemaître
    • 1
  • Alain Vallat
    • 2
  1. 1.Département de ChimieUniversité de SherbrookeSherbrookeCanada
  2. 2.Laboratoire de Synthèse et Électrosynthèse Organométalliques, CNRS UMR 5188, Faculté des Sciences GabrielUniversité de BourgogneDijonFrance

Personalised recommendations