Skip to main content
Log in

New Silver(I) Complexes of Pyridyl Dithioether Ligands with Ag–Ag Interactions: Effects of Anions and Ligand Spacers on the Framework Formations of Complexes

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Three new silver(I) complexes existing Ag–Ag interactions, a trinuclear cluster complex [Ag3(L 1)2(NO3)2](NO3) 1, a dinuclear complex [Ag2(L 1)2](PF6)2 2 and a one-dimensional chain complex [Ag2 L 2(NO3)2] 3, where L 1 and L 2 are two structurally related pyridyl dithioether ligands, bis(2-pyridylthio)methane (L 1) and 1,3-bis(2-pyridylthio)-propane (L 2), have been synthesized and their structures were determined by single-crystal X-ray diffraction analysis. The striking structural differences of 1 and 2 suggest that counter anions have a profound effect upon the framework formations of silver complexes with pyridyl dithioether ligands, and the differences of 1 and 3 indicate that the subtle changes of the space groups have great influence on the coordination modes of the terminal pyridylsulfanyl groups and the geometries of AgI ion and therefore greatly influence the structures of their complexes. The weak Ag⋅⋅⋅O interactions in the trinuclear complex 1 and the one-dimensinoal chain complex 3 extend them into quasi two-dimensional networks, and the Ag⋅⋅⋅S weak interactions in the dinuclear complex 2 into one-dimensinoal chains, and such weak interactions further stabilized these complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (a) M. J. Zaworotko (2000). Angew. Chem. Int. Ed. 39, 3049.

    Google Scholar 

  2. (b) A. J. Blake, N. R. Champness, P. Hubberstey, W. S. Li, M. A. Withersby, and M. Schröder (1999). Coord. Chem. Rev. 183, 117.

    Google Scholar 

  3. (c) S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, and I. D. Williams (1999). Science 283, 1148.

    Google Scholar 

  4. (d) S. R. Batten and R. Robson (1998). Angew. Chem. Int. Ed. 37, 1460.

    Google Scholar 

  5. (e) N. J. Melcer, G. D. Enright, J. A. Ripmeester, and G. K. H. Shimizu (2001). Inorg. Chem. 40, 4641.

    Google Scholar 

  6. (a) M. Fujita, Y. J. Kwon, S. Washizu, and K. Ogura (1994). J. Am. Chem. Soc. 116, 1151.

    Google Scholar 

  7. (b) R. Cao, D. F. Sun, Y. C. Liang, M. C. Hong, K. Tatsumi, and Q. Shi (2002). Inorg. Chem. 41, 2087.

    Google Scholar 

  8. (c) M. L. Tong, Y. M. Wu, J. Ru, X. M. Chen, H. C. Chang, and S. Kitagawa (2002). Inorg. Chem. 41, 4846.

    Google Scholar 

  9. (d) H. Z. Kou, S. Gao, J. Zhang, G. H. Wen, G. Su, R. K. Zheng, and X. X. Zhang (2001). J. Am. Chem. Soc. 123, 11809.

    Google Scholar 

  10. For examples: (a) B. F. Abrahams, P. A. Jackson, and R. Robson (1998). Angew. Chem. Int. Ed. 37, 2656.

    Google Scholar 

  11. (b) D. M. L. Goodgame, D. A. Grachvogel, I. Hussian, A. J. P. White, and D. J. Williams (1999). Inorg. Chem. 38, 2057.

    Google Scholar 

  12. (c) X. H. Bu, W. Chen, S. L. Lu, R. H. Zhang, D. Z. Liao, W. M. Bu, M. Shionoya, F. Brisse, and J. Ribas (2001). Angew. Chem. Int. Ed. 40, 3201.

    Google Scholar 

  13. For examples: (a) K. A. Hirsch, S. R. Wilson, and J. S. Moore (1997). Inorg. Chem. 36, 2960.

    Google Scholar 

  14. (b) R. H. Wang, M. C. Hong, W. P. Su, Y. C. Liang, R. Cao, Y. J. Zhao, J. B. Weng (2001). Inorg. Chim. Acta 323, 139.

    Google Scholar 

  15. (c) M. A. Withersby, A. J. Blake, N. R. Champness, P. Hubberstey, W. S. Li, and M. Schröder (1997). Angew. Chem. Int. Ed. 36, 2327.

    Google Scholar 

  16. (d) M. Du, X. H. Bu, Y. M. Guo, H. Liu, S. R. Batten, J. Ribas, and T. C. W. Mak (2002). Inorg. Chem. 41, 4904.

    Google Scholar 

  17. (e) B. L. Fei, W. Y. Sun, K. B. Yu, and W. X. Tang (2000). J. Chem. Soc., Dalton Trans. 805.

  18. (f) M. Munakata, M. Wen, Y. Suenaga, T. Kuroda-Sowa, M. Maekawa, and M. Anahata (2001). Polyhedron 20, 2321.

    Google Scholar 

  19. (g) G. Yang, S. L. Zheng, X. M. Chen, H. K. Lee, Z. Y. Zhou, and T. C. W. Mak (2000). Inorg. Chim. Acta 303, 86.

    Google Scholar 

  20. For examples: (a) A. J. Blake, N. R. Champness, P. A. Cooke, J. Nicolson, and C. Wilson (2000). J. Chem. Soc., Dalton Trans. 3811.

  21. (b) H. P. Wu, C. Janiak, G. Rheinwald, and H. Lang (1999). J. Chem. Soc., Dalton Trans. 183.

  22. (c) W. P. Su, M. C. Hong, J. B. Weng, Y. C. Liang, Y. J. Zhao, R. Cao, Z. Y. Zhou, and A. Chan (2002). Inorg. Chim. Acta 331, 8.

    Google Scholar 

  23. For examples: (a) M. A. Withersby, A. J. Blake, N. R. Champness, P. A. Cooke, P. Hubberstey, W. S. Li, and M. Schröder (1999). Inorg. Chem. 38, 2259.

    Google Scholar 

  24. (b) S. Subramanian and M. Zaworotko (1995). Angew. Chem. Int. Ed. 34, 2127.

    Google Scholar 

  25. (c) R. W. Gable, B. F. Hoskins, and R. J. Robson (1990). J. Chem. Soc., Chem. Commun. 1677.

  26. (e) Q. M. Wang and T. C. W. Mak (2001). J. Am. Chem. Soc. 123, 7594.

    Google Scholar 

  27. (a) X. H. Bu, W. Chen, W. F. Hou, M. Du, R. H. Zhang, and F. Brisse (2002). Inorg. Chem. 41, 3477.

    Google Scholar 

  28. (b) Y. Zheng, M. Du, J. R. Li, R. H. Zhang, and X. H. Bu (2003). J. Chem. Soc., Dalton Trans. 1509.

  29. (c) X. H. Bu, W. F. Hou, M. Du, W. Chen, and R. H. Zhang (2002). Cryst. Growth & Des. 2, 303.

    Google Scholar 

  30. F. R. Hartley, S. G. Murray, W. Levason, H. E. Soutter, and C. A. McAuliffe (1979). Inorg. Chim. Acta 35, 265.

    Google Scholar 

  31. (a) C. J. Mathews, W. Clegg, S. L. Heath, N. C. Martin, M. N. S. Hill, and J. C. Lorkhart (1998). Inorg. Chem. 37, 199.

    Google Scholar 

  32. (b) Y. Suenaga, T. Kuroda-Sowa, M. Maekawa, and M. Munakata (1999). J. Chem. Soc., Dalton Trans. 2737.

  33. (c) J. R. Black, N. R. Champness, W. Levason, and G. Reid (1996). Inorg. Chem. 35, 4434.

    Google Scholar 

  34. (d) J. Casabo, T. Flor, M. N. S. Hill, H. A. Jenkins, J. C. Lorkhart, S. J. Loeb, I. Romero, and F. Teixidor (1995). Inorg. Chem. 34, 5410.

    Google Scholar 

  35. (e) E. S. Raper (1997). Coord. Chem. Rev. 165, 475.

    Google Scholar 

  36. (f) D. M. L. Goodgame, D. A. Grachvogel, S. Holland, N. J. Long, A. J. P. White, and D. J. Williams (1999). J. Chem. Soc., Dalton Trans. 3473.

  37. (g) Z. Atherton, D. M. L. Goodgame, S. Menzer, and D. J. Williams (1998). Polyhedron 17, 1.

    Google Scholar 

  38. (h) C. M. Hartshorn and P. T. Steel (1998). J. Chem. Soc., Dalton Trans. 3935.

  39. (i) Y. J. Zhao, M. C. Hong, Y. C. Liang, W. P. Su, R. Cao, Z. Y. Zhou, and A. S. C. Chan (2001). Polyhedron 20, 2619.

    Google Scholar 

  40. (j) F. M. Tabellion, S. R. Seidel, A. M. Arif, and P. J. Stang (2001). J. Am. Chem. Soc. 123, 7740.

    Google Scholar 

  41. A. J. Bondi (1964). J. Phys. Chem. 68, 441.

    Google Scholar 

  42. (a) M. Jansen (1987). Angew. Chem. Int. Ed. Engl. 26, 1098.

    Google Scholar 

  43. (b) W. P Su, R. Cao, M. C. Hong, W. T. Wong, and J. X. Lu (1999). Inorg. Chem. Commun. 2, 241.

    Google Scholar 

  44. (c) L. S. Ahmed, J. R. Dilworth, J. R. Miller, and N. Wheatley (1998). Inorg. Chim. Acta 278, 229.

    Google Scholar 

  45. (d) C. M. Hartshorn and P. J. Steel (2000). Inorg. Chem. Commu. 3, 476.

    Google Scholar 

  46. (e) S. P. Yang, H. L Zhu, X. H. Yin, X. M. Chen, and L. N. Ji (2000). Polyhedron 19, 2237.

    Google Scholar 

  47. (f) I. Yoon, Y. H. Lee, J. H. Jung, K. M. Park, J. Kim, and S. S. Lee (2002). Inorg. Chem. Commun. 5, 820.

    Google Scholar 

  48. (g) V. W. W. Yam, P. K. Y. Yeung, and K. K. Cheung (1996). Angew. Chem. Int. Ed. Engl. 35, 739.

    Google Scholar 

  49. (a) C. Janiak (2000). J. Chem. Soc., Dalton Trans. 3885.

  50. (b) S. Paliwal, S. Geib, and C. S. Wilcox (1994). J. Am. Chem. Soc. 116, 4497.

    Google Scholar 

  51. (c) A. N. Khlobystov, A. J. Blake, N. R. Champness, D. A. Lemenovskki, A. G. Majouga, N. V. Zyk, and M. Schröder (2001). Coord. Chem. rev. 222, 155.

    Google Scholar 

  52. (d) A. J. Black, G. Baum, N. R. Champness, S. S. M. Chung, P. A. Cooke, D. Fenske, A. N. Khlobystov, D. A. Lemenovskki, W. S. Li, and M. Schröder (2000). J. Chem. Soc., Dalton Trans. 4285.

  53. (e) M. Munakata, L. P. Wu, M. Yamamoto, T. Kuroda-Sowa, and M. Maekawa (1996). J. Am. Chem. Soc. 118, 3117.

    Google Scholar 

  54. (f) T. Sugimori, H. Masuda, N. Ohata, K. Koiwai, A. Odani, and O. Yamauchi (1997). Inorg. Chem. 36, 576.

    Google Scholar 

  55. (a) A. Hayashi, M. M. Olmstead, S. Attar, and A. L. Balch (2002). J. Am. Chem. Soc. 124, 5791.

    Google Scholar 

  56. (b) S. W. Lee and W. C. Trogler (1990). Inorg. Chem. 29, 1659.

    Google Scholar 

  57. (c) D. Perreault, M. Drouin, A. Michel, V. M. Miskowski, W. P. Schaefer, and P. D. Harvey (1992). Inorg. Chem. 31, 695.

    Google Scholar 

  58. (d) K. Singh, J. R. Long, and P. Stavropoulos (1997). J. Am. Chem. Soc. 119, 2942.

    Google Scholar 

  59. (e) A. Hamel, N. W. Mitzel, and H. Schmidbaur (2001). J. Am. Chem. Soc. 123, 5106.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-He Bu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, YB., Bu, XH. New Silver(I) Complexes of Pyridyl Dithioether Ligands with Ag–Ag Interactions: Effects of Anions and Ligand Spacers on the Framework Formations of Complexes. Journal of Cluster Science 14, 471–482 (2003). https://doi.org/10.1023/B:JOCL.0000010918.09154.c7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOCL.0000010918.09154.c7

Navigation