Skip to main content
Log in

Griscelli Syndrome: Characterization of a New Mutation and Rescue of T-Cytotoxic Activity by Retroviral Transfer of RAB27A Gene

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Griscelli syndrome (GS) is caused by mutations in the MYO5A (GS1), RAB27A (GS2), or MLPH (GS3) genes, all of which lead to a similar pigmentary dilution. In addition, GS1 patients show primary neurological impairment, whereas GS2 patients present immunodeficiency and periods of lymphocyte proliferation and activation, leading to their infiltration in many organs, such as the nervous system, causing secondary neurological damage. We report the diagnosis of GS2 in a 4-year-old child with haemophagocytic syndrome, immunodeficiency, and secondary neurological disorders. Typical melanosome accumulation was found in skin melanocytes and pigment clumps were observed in hair shafts. Two heterozygous mutant alleles of the RAB27A gene were found, a C-T transition (C352T) that leads to Q118stop and a G-C transversion on the exon 5 splicing donor site (G467+1C). Functional assays showed increased cellular activation and decreased cytotoxic activity of NK and CD8+ T cells, associated with defective lytic granules release. Myosin-Va expression and localization in the patient lymphocytes were also analyzed. Most importantly, we show that cytotoxic activity of the patient's CD8+ T lymphocytes can be rescued in vitro by RAB27A gene transfer mediated by a recombinant retroviral vector, a first step towards a potential treatment of the acute phase of GS2 by RAB27A transduced lymphocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Griscelli C, Durandy A, Guy-Grand D, Daguillard F, Herzog C, Prunieras M: A syndrome associating partial albinism and immun-odeficiency. Am J Med 65:691–702, 1978

    PubMed  Google Scholar 

  2. Klein C, Philippe N, Le Deist F, Fraitag S, Prost C, Durandy A, Fischer A, Griscelli C: Partial albinism with immunodeficiency (Griscelli syndrome). J Pediatr 125:886–895, 1994

    PubMed  Google Scholar 

  3. Bahadoran P, Aberdam E, Mantoux F, Busca R, Bille K, Yalman N, Saint-Basile G, Casaroli-Marano R, Ortonne JP, Ballotti R: Rab27a: A key to melanosome transport in human melanocytes. J Cell Biol 152:843–850, 2001

    PubMed  Google Scholar 

  4. Ménasché G, Pastural E, Feldmann J, Certain S, Ersoy F, Dupuis S, Wulffraat N, Bianchi D, Fischer A, Le Deist F, de Saint-Basile G: Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat Genet 25:173–176, 2000

    PubMed  Google Scholar 

  5. de Saint Basile G: Implication du traffic intracellulaire dans troiss maladies héréditaires du syst'eme hématopöýétique. Méd Sci 16:745–750, 2000

    Google Scholar 

  6. Sanal O, Ersoy F, Tezcan I, Metin A, Yel L, Menasche G, Gurgey A, Berkel I, de Saint-Basile G: Griscelli disease: Genotype–phenotype correlation in an array of clinical heterogeneity. J Clin Immunol 22:237–243, 2002

    PubMed  Google Scholar 

  7. Haraldsson A, Weemaes CM, Bakkeren JA, Happle R: Griscelli disease with cerebral involvement. Eur J Pediatr 150:419–422, 1991

    PubMed  Google Scholar 

  8. Pastural E, Barrat FJ, Dufourcq-Lagelouse R, Certain S, Sanal O, Jabado N, Seger R, Griscelli C, Fischer A, de Saint-Basile G: Griscelli disease maps to chromosome 15q21 and is associated with mutations in the myosin-Va gene. Nat Genet 16:289–292, 1997

    PubMed  Google Scholar 

  9. Mercer JA, Seperack PK, Strobel MC, Copeland NG, Jenkins NA: Novel myosin heavy chain encoded by murine dilute coat colour locus. Nature 349:709–713, 1991

    Article  PubMed  Google Scholar 

  10. Titus MA: Motor proteins: Myosin-V the multi-purpose transport motor. Curr Biol 7:R301–R304, 1997

    PubMed  Google Scholar 

  11. Reck-Peterson SL, Tyska MJ, Novick PJ, Mooseker MS: The yeast class V myosins, Myo2p and Myo4p, are nonprocessive actin-based motors. J Cell Biol 153:1121–1126, 2001

    PubMed  Google Scholar 

  12. Langford GM: Myosin-V, a versatile motor for short-range vesicle transport. Traffic 3:859–865, 2002

    PubMed  Google Scholar 

  13. Pastural E, Ersoy F, Yalman N, Wulffraat N, Grillo E, Ozkinay F, Tezcan I, Gedikoglu G, Philippe N, Fischer A, de Saint-Basile G: Two genes are responsible for Griscelli syndrome at the same 15q21 locus. Genomics 63:299–306, 2000

    PubMed  Google Scholar 

  14. Wilson SM, Yip R, Swing DA, O'Sullivan TN, Zhang Y, Novak EK, Swank RT, Russell LB, Copeland NG, Jenkins NA: A mutation in Rab27a causes the vesicle transport defects observed in ashen mice. Proc Natl Acad Sci USA 97:7933–7938, 2000

    PubMed  Google Scholar 

  15. Deacon SW, Gelfand VI: Of yeast, mice, and men. Rab proteins and organelle transport. J Cell Biol 152:F21–F24, 2001

    PubMed  Google Scholar 

  16. Seabra MC, Mules EH, Hume AN: Rab GTPases, intracellular traffic and disease. Trends Mol Med 8:23–30, 2002

    PubMed  Google Scholar 

  17. Schneider LC, Berman RS, Shea CR, Perez-Atayde AR, Weinstein H, Geha RS: Bone marrow transplantation (BMT) for the syndrome of pigmentary dilution and lymphohistiocytosis (Griscelli's syn-drome). J Clin Immunol 10:146–153, 1990

    PubMed  Google Scholar 

  18. Tezcan I, Sanal O, Ersoy F, Uckan D, Kilic S, Metin A, Cetin M, Akin R, Oner C, Tuncer A: Successful bone marrow transplantation in a case of Griscelli disease which presented in accelerated phase with neurological involvement. Bone Marrow Transplant 24:931–933, 1999

    PubMed  Google Scholar 

  19. Gurgey A, Sayli T, Gunay M, Ersoy F, Kucukali T, Kale G, Caglar M: High-dose methylprednisolone and VP-16 in treatment of Griscelli syndrome with central nervous system involvement. Am J Hematol 47:331–332, 1994

    PubMed  Google Scholar 

  20. Imashuku S, Hibi S, Ohara T, Iwai A, Sako M, Kato M, Arakawa H, Sotomatsu M, Kataoka S, Asami K, Hasegawa D, Kosaka Y, Sano K, Igarashi N, Maruhashi K, Ichimi R, Kawasaki H, Maeda N, Tanizawa A, Arai K, Abe T, Hisakawa H, Miyashita H, Henter JI: Effective control of Epstein-Barr virus-related hemophagocytic lymphohistiocytosis with immunochemotherapy. Blood 93:1869–1874, 1999

    PubMed  Google Scholar 

  21. Anikster Y, Huizing M, Anderson PD, Fitzpatrick DL, Klar A, Gross-Kieselstein E, Berkun Y, Shazberg G, Gahl WA, Hurvitz H: Evidence that Griscelli syndrome with neurological involvement is caused by mutations in RAB27A, not MYO5A. Am J Hum Genet 71:407–414, 2002

    PubMed  Google Scholar 

  22. Matesic LE, Yip R, Reuss AE, Swing DA, O'Sullivan TN, Fletcher CF, Copeland NG, Jenkins NA: Mutations in Mlph, encoding a mem-ber of the Rab effector family, cause the melanosome transport de-fects observed in leaden mice. Proc Natl Acad Sci USA 98:10238–10243, 2001

    PubMed  Google Scholar 

  23. Ménasché G, Ho CH, Sanal O, Feldmann J, Tezcan I, Ersoy F, Houdusee A, Fisher A, de Saint-Basile G: Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1). J Clin Invest 112:450–456, 2003

    PubMed  Google Scholar 

  24. Wu XS, Rao K, Zhang H, Wang F, Sellers JR, Matesic LE, Copeland NG, Jenkins NA, Hammer JA, III: Identification of an organelle receptor for myosin-Va. Nat Cell Biol 4:271–278, 2002

    PubMed  Google Scholar 

  25. Nagashima K, Torii S, Yi Z, Igarashi M, Okamoto K, Takeuchi T, Izumi T: Melanophilin directly links Rab27a and myosin Va through its distinct coiled-coil regions. FEBS Lett 517:233–238, 2002

    PubMed  Google Scholar 

  26. Fukuda M, Kuroda TS, Mikoshiba K: Slac2-a/melanophilin, the missing link between Rab27 and myosin Va: Implications of a tri-partite protein complex for melanosome transport. J Biol Chem 277:12432–12436, 2002

    PubMed  Google Scholar 

  27. Provance DW, Jr, James TL, Mercer JA: Melanophilin, the prod-uct of the Leaden locus, is required for targeting of myosin-Va to melanosomes. Traffic 3:124–132, 2002

    PubMed  Google Scholar 

  28. Nascimento AA, Roland JT, Gelfand VI: Pigment cells: A model for the study of organelle transport. Annu Rev Cell Dev Biol 19:469–491, 2003

    PubMed  Google Scholar 

  29. Hume AN, Collinson LM, Hopkins CR, Strom M, Barral DC, Bossi G, Griffiths GM, Seabra MC: The leaden gene product is required with Rab27a to recruit myosin Va to melanosomes in melanocytes. Traffic 3:193–202, 2002

    PubMed  Google Scholar 

  30. Espindola FS, Espreafico EM, Coelho MV, Martins AR, Costa FR, Mooseker MS, Larson RE: Biochemical and immunological char-acterization of p190-calmodulin complex from vertebrate brain: A novel calmodulin-binding myosin. J Cell Biol 118:359–368, 1992

    PubMed  Google Scholar 

  31. Reis D, Souza M, Mineo J, Espindola F: Myosin V and iNOS ex-pression is enhanced in J774 murine macrophages treated with IFN-gamma. Braz J Med Biol Res 34:221–226, 2001

    PubMed  Google Scholar 

  32. Rodriguez OC, Cheney RE: Human myosin-Vc is a novel class V myosin expressed in epithelial cells. J Cell Sci 115:991–1004, 2002

    PubMed  Google Scholar 

  33. Bizario JC, Castro FA, Sousa JF, Fernandes RN, Damiao AD, Oliveira MK, Palma PV, Larson RE, Voltarelli JC, Espreafico EM: Myosin-V colocalizes with MHC class II in blood mononuclear cells and is up-regulated by T-lymphocyte activation. J Leukoc Biol 71:195–204, 2002

    PubMed  Google Scholar 

  34. Strom M, Hume AN, Tarafder AK, Barkagianni E, Seabra MC: A family of Rab27-binding proteins. Melanophilin links Rab27a and myosin Va function in melanosome transport. J Biol Chem 277:25423–25430, 2002

    PubMed  Google Scholar 

  35. Haddad EK, Wu X, Hammer JA, III, Henkart PA: Defective granule exocytosis in Rab27a-deficient lymphocytes from Ashen mice. J Cell Biol 152:835–842, 2001

    PubMed  Google Scholar 

  36. Stinchcombe JC, Barral DC, Mules EH, Booth S, Hume AN, Machesky LM, Seabra MC, Griffiths GM: Rab27a is required for regulated secretion in cytotoxic T lymphocytes. J Cell Biol 152:825–834, 2001

    PubMed  Google Scholar 

  37. Stepp SE, Dufourcq-Lagelouse R, Le Deist F, Bhawan S, Certain S, Mathew PA, Henter JI, Bennett M, Fischer A, de Saint-Basile G, Kumar V: Perforin gene defects in familial hemophagocytic lym-phohistiocytosis. Science 286:1957–1959, 1999

    PubMed  Google Scholar 

  38. Bach FH, Bach ML: Mixed lymphocyte cultures in transplantation immunology. Transplant Proc 3:942–948, 1971

    PubMed  Google Scholar 

  39. Espreafico EM, Cheney RE, Matteoli M, Nascimento AAC, de Camili PV, Larson RE, Mooseker MS: Primary structure and cellular localization of chicken brain myosin-V (p190), an unconventional myosin with calmodulin light chains. J Cell Biol 119:1541–1558, 1992

    Article  PubMed  Google Scholar 

  40. Chang L, Gusewitch GA, Chritton DB, Folz JC, Lebeck LK, Nehlsen-Cannarella SL: Rapid flow cytometric assay for the assessment of natural killer cell activity. J Immunol Methods 166:45–54, 1993

    PubMed  Google Scholar 

  41. Kim S, Yokoyama WM: NK cell granule exocytosis and cy-tokine production inhibited by Ly-49A engagement. Cell Immunol 183:106–112, 1998

    PubMed  Google Scholar 

  42. Hacein-Bey H, Cavazzana-Calvo M, Le Deist F, Dautry-Varsat A, Hivroz C, Riviere I, Danos O, Heard JM, Sugamura K, Fisher A, de Saint-Basile G: Gamma-c gene transfer into SCID X1 patients' B-cell lines restores normal high-affinity interleukin-2 receptor expression and function. Blood 87:3108–3116, 1996

    PubMed  Google Scholar 

  43. Yang S, Delgado R, King SR, Woffendin C, Barker CS, Yang ZY, Xu L, Nolan GP, Nabel GJ: Generation of retroviral vector for clinical studies using transient transfection. Hum Gene Ther 10:123–132, 1999

    PubMed  Google Scholar 

  44. de Saint-Basile G, Fisher A: The role of cytotoxicity in lymphocyte homeostasis. Curr Opin Immunol 13:549–354, 2001

    PubMed  Google Scholar 

  45. Hume AN, Collinson LM, Rapak A, Gomes AQ, Hopkins CR, Seabra MC: Rab27a regulates the peripheral distribution of melanosomes in melanocytes. J Cell Biol 152:795–808, 2001

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bizario, J.C.S., Feldmann, J., Castro, F.A. et al. Griscelli Syndrome: Characterization of a New Mutation and Rescue of T-Cytotoxic Activity by Retroviral Transfer of RAB27A Gene. J Clin Immunol 24, 397–410 (2004). https://doi.org/10.1023/B:JOCI.0000029119.83799.cb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOCI.0000029119.83799.cb

Navigation