Skip to main content
Log in

Tapasin Decreases Immune Responsiveness to a Model Tumor Antigen

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

The T-cell response against cancer is dependent on the cell surface presentation of tumor-associated or tumor-specific peptides by major histocompatibility complex (MHC) class I molecules. We found that tapasin, a chaperone protein that normally assists in the assembly of MHC class I molecules, is undetectable in an unstimulated pancreatic tumor cell line, Panc02, and only very weakly expressed after γ-interferon stimulation. Transfection of tapasin into the Panc02 cells did not quantitatively increase MHC class I surface expression or detectably affect MHC class I association with peptide and β2-microglubulin (β2m). However, we found that transfected tapasin downregulated immune reactivity against a model tumor antigen, MUC1. Although tapasin has been previously shown by others to increase immune recognition of particular antigens, our results suggest that tapasin has a negative impact on the presentation of an immunodominant epitope from a specific model tumor antigen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Pamer E, Cresswell P: Mechanisms of MHC class I-restricted anti-gen processing. Annu Rev Immunol 16:323–358, 1998

    Google Scholar 

  2. Carreno BM, Solheim JC, Harris M, Stroynowski I, Connolly JM, Hansen TH: TAP associates with a unique class I conformation, whereas calnexin associates with multiple class I forms in mouse and man. J Immunol 155:4726–4733, 1995

    PubMed  Google Scholar 

  3. Harris MR, Yu YYL, Kindle CS, Hansen TH, Solheim JC: Calreticulin and calnexin interact with different protein and glycan deter-minants during the assembly of MHC class I. J Immunol 160:5404–5409, 1998

    PubMed  Google Scholar 

  4. Ortmann B, Androlewicz MJ, Cresswell P: MHC class I/?2-microglobulin complexes associate with TAP transporters before peptide binding. Nature 368:864–867, 1994

    PubMed  Google Scholar 

  5. Suh W-K, Cohen-Doyle MF, Früh K, Wang K, Peterson PA, Williams DB: Interaction of MHC class I molecules with the transporter associated with antigen processing. Science 264:1322–1326, 1994

    PubMed  Google Scholar 

  6. Garbi N, Tan P, Diehl AD, Chambers BJ, Ljunggren H-G, Momburg F, Hämmerling GJ: Impaired immune responses and altered peptide repertoire in tapasin-deficient mice. Nat Immunol 3:234–238, 2000

    Google Scholar 

  7. Grandea AG III, Golovina TN, Hamilton SE, Sriram V, Spies T, Brutkiewicz RR, Harty JT, Eisenlohr LC, Van Kaer L: Impaired assembly yet normal trafficking of MHCclass I molecules in tapasin mutant mice. Immunity 13:213–222, 2000

    PubMed  Google Scholar 

  8. Dissemond J, Kothen T, Mors J, Weimann TK, Lindeke A, Goos M, Wagner SN: Downregulation of tapasin expression in progressive human malignant melanoma. Arch Dermatol Res 295:43–49, 2003

    PubMed  Google Scholar 

  9. Weinman EC, Roche PC, Kasperbauer JL, Cha SS, Sargent DJ, Cheville J, Murphy LM, Chen L, Wettstein PJ, Gostout B, Ferrone S, Strome SE: Characterization of antigen processing machinery and surviving expression in tonsillar squamous cell carcinoma. Cancer 97:2203–2211, 2003

    PubMed  Google Scholar 

  10. Delp K, Momburg F, Hilmes C, Huber C, Seliger B: Functional deficiencies of components of the MHC class I antigen pathway in human tumors of epithelial origin. Bone Marrow Transplant 25(Suppl 2):S88–S95, 2000

    PubMed  Google Scholar 

  11. Seliger B, Schreiber K, Delp K, Meissner M, Hammers S, Reichert T, Pawlischko K, Tampé R, Huber C: Downregulation of the constitutive tapasin expression in human tumor cells of distinct origin and its transcriptional upregulation by cytokines. Tissue Antigens 57:39–45, 2001

    PubMed  Google Scholar 

  12. Yu YYL, Turnquist HR, Myers NB, Balendiran GK, Hansen TH, Solheim JC: An extensive region of an MHC class I ?2 domain loop influences interaction with the assembly complex. J Immunol 163:4427–4433, 1999

    PubMed  Google Scholar 

  13. Van Endert PM, Tamp´ e R, Meyer TH, Tisch R, Bach JR, McDevitt HO: A sequential model for peptide binding and transport by the transporters associated with antigen processing. Immunity 1:491–500, 1994

    PubMed  Google Scholar 

  14. Price MR, Rye PD, Petrakou E, Murray A, Brady K, Imai S, Haga S, Kiyozuka Y, Schol D, Meulenbroek MF, Snijdewint FG, Von Mensdorff-Pouilly S, Verstraeten RA, Kenemans P, Blockzjil A, Nilsson K, Nilsson O, Reddish M, Suresh MR, Koganty RR, Fortier S, Baronic L, Berg A, Longenecker MB, Hilgers J: Summary report on the ISOBM TD-4 Workshop: Analysis of 56 monoclonal antibodies against the MUC1 mucin. Tumor Biol 19:1–20, 1998

    Google Scholar 

  15. Hämmerling GJ, Hämmerling U, Lemke H: Isolation of twelve monoclonal antibodies against Ia and H-2 antigens: Serological characterization and reactivity with Band T lymphocytes. Immunogenetics 8:433–445, 1979

    Google Scholar 

  16. Hämmerling GJ, Rusch E, Tada N, Kimura S, Hämmerling U: Localization of allodeterminants on H-2K b antigens determined with monoclonal antibodies and H-2 mutant mice. Proc Natl Acad Sci USA 79:4737–4741, 1982

    PubMed  Google Scholar 

  17. Ozato K, Hansen TH, Sachs DH: Monoclonal antibodies to mouse MHC antigens. II. Antibodies to the H-2L d antigen, the product of a third polymorphic locus of the mouse major histocompatibility complex. J Immunol 145:2473–2477, 1980

    Google Scholar 

  18. Smith JD, Solheim JC, Carreno BM, Hansen TH: Characterization of class I MHCfolding intermediates and their disparate interactions with peptide and ?2-microglobulin. Mol Immunol 32:531–540, 1995

    PubMed  Google Scholar 

  19. Corbett TH, Roberts BJ, Leopold WR, Peckham JC, Wilkoff LJ, Griswold DP Jr, S chabel FM Jr: Induction and chemotherapeutic response of two transplantable ductal adenocarcinomas of the pancreas in C57BL/6 mice. Cancer Res 44:717–726, 1984

    PubMed  Google Scholar 

  20. Morikane K, Tempero RM, Sivinski CL, Nomoto M, VanLith ML, Muto T, Hollingsworth MA: Organ-specific pancreatic tumor growth properties and tumor immunity. Cancer Immunol Immunother 47:287–296, 1999

    PubMed  Google Scholar 

  21. Li S, Sjögren H-O, Hellman U, Pettersson RF, Wang P: Cloning and functional characterization of a subunit of the transporter associated with antigen processing. Proc Natl Acad Sci USA 94:8708–8713, 1997

    PubMed  Google Scholar 

  22. Karre K, Ljunggren HG, Piontek G, Kiessling R: Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319:675–678, 1986

    PubMed  Google Scholar 

  23. Seliger B, Ritz U, Abele R, Bock M, Tamp´ e R, Sutter G, Drexler I, Huber C, Ferrone S: Immune escape of melanoma: First evidence of structural alterations in two distinct components of the MHC class I antigen processing pathway. Cancer Res 61:8647–8650, 2001

    PubMed  Google Scholar 

  24. Purcell AW, Gorman JJ, Garcia-Peydro M, Paradela A, Talbo GH, Burrows SR, Laham N, Peh CA, Reynolds EC, Lopez de Castro JA, McCluskey J: Quantitative and qualitative influence of tapasin on the class I peptide repertoire. J Immunol 166:1016–1027, 2001

    PubMed  Google Scholar 

  25. Qin Z, Harders C, Cao X, Huber C, Blankenstein T, Seliger B: Increased tumorigenicity, but unchanged immunogenicity, of trans-porter for antigen presentation 1-deficient tumors. Cancer Res 62:2856–2860, 2002

    PubMed  Google Scholar 

  26. Huang AY, Golumbek P, Ahmadzadeh M, Jaffee E, Pardoll D, Levitsky H: Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 264:961–965, 1994

    Google Scholar 

  27. Yewdell JW, Norbury CC, Bennink JR: Mechanisms of exogenous antigen presentation by MHC class I molecules in vitro and in vivo: Implications for generating CD8+ T cell responses to infectious agents, tumors, transplants, and vaccines. Adv Immunol 73:1–77, 1999

    PubMed  Google Scholar 

  28. Sivinski CL, Kohlgraf KG, VanLith ML, Morikane K, Tempero RM, Hollingsworth MA: Molecular requirements for CD8-mediated rejection of a MUC1-expressing pancreatic carcinoma: Implications for tumor vaccines. Cancer Immunol Immunother 51:327–340, 2002

    PubMed  Google Scholar 

  29. Huang AY, Bruce AT, Pardoll DM, Levitsky HI: Does B7-1 expression confer antigenpresenting cell capacity to tumors in vivo? J Exp Med 183:769–776, 1996

    PubMed  Google Scholar 

  30. Turnquist HR, Thomas HJ, Prilliman KR, Lutz CT, Hildebrand WH, Solheim JC: HLA-B polymorphism affects interactions with multiple endoplasmic reticulum proteins. Eur J Immunol 30:3021–3028, 2000

    PubMed  Google Scholar 

  31. Turnquist HR, Schenk EL, McIlhaney MM, Hickman HD, Hilde-brand WH, Solheim JC: Disparate binding of chaperone proteins by HLA-A subtypes. Immunogenetics 53:830–834, 2002

    PubMed  Google Scholar 

  32. Peh CA, Burrows SR, Barnden M, Khanna R, Cresswell P, Moss D, McCluskey J: HLA-B27 restricted antigen presentation in the absence of tapasin reveals polymorphism in mechanisms of HLA class I-peptide loading. Immunity 8:531–542, 1998

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turnquist, H.R., Kohlgraf, K.G., McIlhaney, M.M. et al. Tapasin Decreases Immune Responsiveness to a Model Tumor Antigen. J Clin Immunol 24, 462–470 (2004). https://doi.org/10.1023/B:JOCI.0000029118.51587.d9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOCI.0000029118.51587.d9

Navigation