Skip to main content
Log in

Essential Role of OX40L on B Cells in Persistent Alloantibody Production Following Repeated Alloimmunizations

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

OX40/OX40 ligand (OX40L) interactions are implicated in costimulation for both CD4+ T and B cells in a bidirectional manner. To determine the role of OX40/OX40L interactions in recipient antidonor responses after multiple allogeneic transfusions, we examined alloreactive cytotoxic T lymphocyte (allo-CTL) activity and alloantibody production in repeatedly alloimmunized OX40L-deficient mice. After the fifth alloimmunization, whereas OX40L-deficient mice showed allo-CTL activity with levels comparable to those of wild-type mice, alloantibody production in OX40L-deficient mice was significantly reduced, accompanied by fewer memory B and CD4+ T cells with reduced function. Furthermore, nu/nu mice that received OX40L-deficient T cells still exhibited impaired alloantibody production with fewer memory CD4+ T and B cells. In contrast, RAG-2-deficient mice that received both wild-type T cells and OX40L-deficient B cells produced scant alloantibodies with fewer memory B cells, but sufficient memory CD4+ T cells. Thus, OX40L on B cells, rather than on T cells, is apparently required for adequate and persistent production of alloantibodies after repeated alloimmunizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kaminski ER, Hows JM, Goldman JM, Batchelor JR: Lymphocytes from multi-transfused patients exhibit cytotoxicity against autologous cells. Br J Haematol 81:23-26, 1992

    Google Scholar 

  2. Grijzenhout MA, Aartd-Riemens MI, Claas FHJ, van Prooijen HC: Prevention of MHC-alloimmunization by UV-B irradiation in a murine model: Effects of UV dose and number of transfused cells. Br J Haematol 87:598-604, 1994

    Google Scholar 

  3. Semple JW, Speck ER, Milev YP, Blanchette V, Freedman J: Indirect allorecognition of platelets by T helper cells during platelet transfusions correlates with anti-MHC antibody and cytotoxic T lymphocyte formation. Blood 86:805-812, 1995

    Google Scholar 

  4. Brand A: Immunological aspects of blood transfusions. Transplant Immunol 10:183-190, 2002

    Google Scholar 

  5. Schiffer CA, Slichter SJ: Platelet transfusion from a single donor. N Engl J Med 307:245-248, 1982

    Google Scholar 

  6. Menitove JE, Aster RA: Transfusion of platelets and plasma products. Clin Haematol 12:239-266, 1983

    Google Scholar 

  7. Schiffer CA: Prevention of alloimmunization against platelets. Blood 77:1-4, 1991

    Google Scholar 

  8. Blajchman MA, Bardossy L, Carmen RA, Goldman M, Heddle NM, Singal DP: An animal model of allogeneic donor platelet refractoriness: The effect of the time of leukodepletion. Blood 79:1371-1375, 1992

    Google Scholar 

  9. Zimmermann R, Wittmann G, Zingsem J, Blasczyk R, Weisbach V, Eckstein R: Antibodies to private and public HLA class I epitopes in platelet recipients. Transfusion 39:772-780, 1999

    Google Scholar 

  10. Benson K, Agosti SJ, Latoni-Benedetti GE, Leparc GF: Acute and delayed hemolytic transfusion reactions secondary to HLA alloimmunization. Transfusion 43:753-757, 2003

    Google Scholar 

  11. Andrew G, Dewailly J, Leberre C, Quarre MC, Bidet ML, Tardivel R, Devers L, Lam Y, Soreau E, Boccacio C, Piard N, Bidet JM, Genetet B, Fauchet R: Prevention of HLA immunization with leukocyte-poor packed red cells and platelet concentrates obtained by filtration. Blood 72:964-969, 1988

    Google Scholar 

  12. Heddle NM: The efficacy of leukodepletion to improve platelet transfusion response: A critical appraisal of clinical studies. Transfus Med Rev 8:15-28, 1994

    Google Scholar 

  13. Kao KJ, Mickel M, Braine HG, Davis K, Enright H, Gernsheimer T, Gillespie MJ, Kickler TS, Lee EJ, McCullough JJ: White cell reduction in platelet concentrates and packed red cells by filtration: A multicenter clinical trial. The Trap Study Group. Transfusion 35:13-19, 1995

    Google Scholar 

  14. Vamvakas EC: Meta-analysis of randomized controlled trials of the efficacy of white cell reduction in preventing HLA-alloimmunization and refractoriness to random-donor platelet transfusions. Transfus Med Rev 12:258-270, 1998

    Google Scholar 

  15. Blundell EL, Pamphilon DH, Fraser ID, Menitove JE, Greenwalt TJ, Snyder EL, Repucci AJ, Hedberg SL, Anderson JK, Buchholz DH, Kagen LR, Aster RH: A prospective, randomized study of the use of platelet concentrates irradiated with ultraviolet-B light in patients with hematologic malignancy. Transfusion 36:296-302, 1996

    Google Scholar 

  16. Kao KJ: Induction of humoral immune tolerance to major histocompatibility complex antigens by transfusions of UVB-irradiated leukocytes. Blood 88:4375-4382, 1996

    Google Scholar 

  17. The Trial to Reduce Alloimmunization to Platelets Study Group: Leukocyte reduction and ultraviolet B irradiation of platelets to prevent alloimmunization and refractoriness to platelet transfusions. N Engl J Med 337:1861-1869, 1997

    Google Scholar 

  18. Kao KL: Effects of leukocyte depletion and UVB irradiation on alloantigenicity of major histocompatibility complex antigens in platelet concentrates: A comparative study. Blood 80:2931-2937, 1992

    Google Scholar 

  19. van de Watering L, Hermans J, Witvliet M, Versteegh M, Brand A: HLA and RBC immunization after filtered and buffy coat-depleted blood transfusion in cardiac surgery: A randomized controlled trial. Transfusion 43:765-771, 2003

    Google Scholar 

  20. Grijzenhout MA, Aarts-Riemens MI, de Gruijl FR, van Weelden H, van Prooijen HC: UVB irradiation of human platelet concentrates does not prevent HLA alloimmunization in recipients. Blood 84:3524-3531, 1994

    Google Scholar 

  21. Janeway CA, Jr, Bottomly K: Signals and signs for lymphocyte responses. Cell 76:275-285, 1994

    Google Scholar 

  22. Jenkins MK: The ups and downs of T cell costimulation. Immunity 1:443-446, 1994

    Google Scholar 

  23. Baum PR, Gayle RB, 3rd, Ramsdell F, Srinivasan S, Sorensen RA, Watson ML, Seldin MF, Baker E, Sutherland GR, Clifford KN: Molecular characterization of murine and human OX40/OX40 ligand systems: Identification of a human OX40 ligand as the HTLV-1-regulated protein gp34. EMBO J 13:3992-4001, 1994

    Google Scholar 

  24. Calderhead DM, Buhlmann JE, van den Eertwegh AJ, Claassen E, Noelle RJ, Fell HP: Cloning of mouse Ox40: A T cell activation marker that may mediate T-B cell interactions. J Immunol 151:5261-5271, 1993

    Google Scholar 

  25. Latza U, Durkop H, Schnittger S, Ringeling J, Eitelbach F, Hummel M, Fonatsch C, Stein H: The human OX40 homolog: cDNA structure, expression and chromosomal assignment of the ACT35 antigen. Eur J Immunol 24:677-683, 1994

    Google Scholar 

  26. Gramaglia I, Weinberg AD, Lemon M, Croft M: Ox-40 ligand: A potent costimulatory molecule for sustaining primary CD4 T cell responses. J Immunol 161:6510-6517, 1998

    Google Scholar 

  27. Gramaglia I, Jember A, Pippig SD, Weinberg AD, Killeen N, Croft M: The OX40 costimulatory receptor determines the development of CD4 memory by regulating primary clonal expansion. J Immunol 165:3043-3050, 2000

    Google Scholar 

  28. Ohshima Y, Yang LP, Uchiyama T, Tanaka Y, Baum P, Sergerie M, Hermann P, Delespesse G: OX40 costimulation enhances interleukin-4 (IL-4) expression at priming and promotes the differentiation of naive human CD4(+) T cells into high IL-4-producing effectors. Blood 92:3338-3345, 1998

    Google Scholar 

  29. Evans DE, Prell RA, Thalhofer CJ, Hurwitz AA, Weinberg AD: Engagement of OX40 enhances antigen-specific CD4 (+) T cell mobilization/memory development and humoral immunity: Comparison of α OX-40 with α CTLA-4. J Immunol 167:6804-6811, 2001

    Google Scholar 

  30. Maxwell JR, Weinberg A, Prell RA, Vella AT: Danger and OX40 receptor signaling synergize to enhance memory T cell survival by inhibiting peripheral deletion. J Immunol 164:107-112, 2000

    Google Scholar 

  31. Rogers PR, Song J, Gramaglia I, Killeen N, Croft M: OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity 15:445-455, 2001

    Google Scholar 

  32. Al-Shamkhani A, Birkeland ML, Puklavec M, Brown MH, James W, Barclay AN: OX40 is differentially expressed on activated rat and mouse T cells and is the sole receptor for the OX40 ligand. Eur J Immunol 26:1695-1699, 1996

    Google Scholar 

  33. Al-Shamkhani A, Mallett S, Brown MH, James W, Barclay AN: Affinity and kinetics of the interaction between soluble trimeric OX40 ligand, a member of the tumor necrosis factor superfamily, and its receptor OX40 on activated T cells. J Biol Chem 272:5275-5282, 1997

    Google Scholar 

  34. Stuber E, Neurath M, Calderhead D, Fell HP, Strober W: Cross-linking of OX40 ligand, a member of the TNF/NGF cytokine family, induces proliferation and differentiation in murine splenic B cells. Immunity 2:507-521, 1995

    Google Scholar 

  35. Ohshima Y, Tanaka Y, Tozawa H, Takahashi Y, Maliszewski C, Delespesse G: Expression and function of OX40 ligand on human dendritic cells. J Immunol 159:3838-3848, 1997

    Google Scholar 

  36. Malmstrom V, Shipton D, Singh B, Al-Shamkhani A, Puklavec MJ, Barclay AN, Powrie F: CD134L expression on dendritic cells in the mesenteric lymph nodes drives colitis in T cell-restored SCID mice. J Immunol 166:6972-6981, 2001

    Google Scholar 

  37. Stuber E, Strober W: The T cell-B cell interaction via OX40-OX40L is necessary for the T cell-dependent humoral immune response. J Exp Med 183:979-989, 1996

    Google Scholar 

  38. Matsumura Y, Hori T, Kawamata S, Imura A, Uchiyama T: Intracellular signaling of gp34, the OX40 ligand: Induction of c-jun and c-fos mRNA expression through gp34 upon binding of its receptor, OX40. J Immunol 163:3007-3011, 1999

    Google Scholar 

  39. Morimoto S, Kanno Y, Tanaka Y, Tokano Y, Hashimoto H, Jacquot S, Morimoto C, Schlossman SF, Yagita H, Okumur K, Kobata T: CD134L engagement enhances human B cell Ig production: CD154/CD40, CD70/CD27, and CD134/CD134L interactions coordinately regulate T cell-dependent B cell responses. J Immunol 164:4097-4104, 2000

    Google Scholar 

  40. Parker DC: T cell-dependent B cell activation. Annu Rev Immunol 11:331-360, 1993

    Google Scholar 

  41. van den Eertwegh AJ, Laman JD, Noelle RJ, Boersma WJ, Claassen E: In vivo T-B cell interactions and cytokine-production in the spleen. Semin Immunol 6:327-336, 1994

    Google Scholar 

  42. Gray D, Siepmann K, van Essen D, Poudrier J, Wykes M, Jainandunsing S, Bergthorsdottir S, Dullforce P: B-T lymphocyte interactions in the generation and survival of memory cells. Immunol Rev 150:45-61, 1996

    Google Scholar 

  43. Tanaka H, Demeure CE, Rubio M, Delespesse G, Sarfati M: Human monocyte-derived dendritic cells induce naive T cell differentiation into T helper cell type 2 (Th2) or Th1/Th2 effectors. Role of stimulator/responder ratio. J Exp Med 192:405-412, 2000

    Google Scholar 

  44. Akiba H, Miyahira Y, Atsuta M, Takeda K, Nohara C, Futagawa T, Matsuda H, Aoki T, Yagita H, Okumura K: Critical contribution of OX40 ligand to T helper cell type 2 differentiation in experimental leishmaniasis. J Exp Med 191:375-380, 2000

    Google Scholar 

  45. Jember AG, Zuberi R, Liu FT, Croft M: Development of allergic inflammation in a murine model of asthma is dependent on the costimulatory receptor OX40. J Exp Med 193:387-392, 2001

    Google Scholar 

  46. Flynn S, Toellner KM, Raykundalia C, Goodall M, Lane P: CD4 T cell cytokine differentiation: The B cell activation molecule, OX40 ligand, instructs CD4 T cells to express interleukin 4 and upregulates expression of the chemokine receptor, Blr-1. J Exp Med 188:297-304, 1998

    Google Scholar 

  47. Lane P: Role of OX40 signals in coordinating CD4 T cell selection, migration, and cytokine differentiation in T helper (Th)1 and Th2 cells. J Exp Med 191:201-206, 2000

    Google Scholar 

  48. Murata K, Ishii N, Takano H, Miura S, Ndhlovu LC, Nose M, Noda T, Sugamura K: Impairment of antigen-presenting cell function in mice lacking expression of OX40 ligand. J Exp Med 191:365-374, 2000

    Google Scholar 

  49. Kopf M, Ruedl C, Schmitz N, Gallimore A, Lefrang K, Ecabert B, Odermatt B, Bachmann MF: OX40-deficient mice are defective in Th cell proliferation but are competent in generating B cell and CTL Responses after virus infection. Immunity 11:699-708, 1999

    Google Scholar 

  50. Berke G, Rosen D, Ronen D, Schick B: Immunobiology and molecular characteristics of peritoneal exudates cytotoxic T lymphocytes (PEL), their in vivo IL-2-dependent blasts and IL-2-independent cytolytic hybridomas. In Cytotoxic Cells: Recognition, Effector Function, Generation, and Methods, MV Sitkovsky, PA Henkart (eds). Cambridge, Birkhäuser Boston, 1993, pp 113-127

  51. Coffman RL, Lebman DA, Rothman P: Mechanism and regulation of immunoglobulin isotype switching. Adv Immunol 54:229-270, 1993

    Google Scholar 

  52. Wurster AL, Rodgers VL, White MF, Rothstein TL, Grusby MJ: Interleukin-4-mediated protection of primary B cells from apoptosis through Stat6-dependent up-regulation of Bcl-xL. J Biol Chem 277:27169-27175, 2002

    Google Scholar 

  53. Dancescu M, Rubio-Trujillo M, Biron G, Bron D, Delespesse G, Sarfati M: Interleukin 4 protects chronic lymphocytic leukemic B cells from death by apoptosis and upregulates Bcl-2 expression. J Exp Med 176:1319-1326, 1992

    Google Scholar 

  54. Choe J, Kim HS, Armitage RJ, Choi YS: The functional role of B cell antigen receptor stimulation and IL-4 in the generation of human memory B cells from germinal center B cells. J Immunol 159:3757-3766, 1997

    Google Scholar 

  55. Akiba H, Oshima H, Takeda K, Atsuta M, Nakano H, Nakajima A, Nohara C, Yagita H, Okumura K: CD28-independent costimulation of T cells by OX40 ligand and CD70 on activated B cells. J Immunol 162:7058-7066, 1999

    Google Scholar 

  56. Chen AI, McAdam AJ, Buhlmann JE, Scott S, Lupher ML, Jr, Greenfield EA, Baum PR, Fanslow WC, Calderhead DM, Freeman GJ, Sharpe AH: Ox40-ligand has a critical costimulatory role in dendritic cell: T cell interactions. Immunity 11:689-698, 1999

    Google Scholar 

  57. Diehl S, Rincon M: The two faces of IL-6 on Th1/Th2 differentiation. Mol Immunol 39:531-536, 2002

    Google Scholar 

  58. Trinchieri G: Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3:133-146, 2003

    Google Scholar 

  59. Linton PJ, Bautista B, Biederman E, Bradley ES, Harbertson J, Kondrack RM, Padrick RC, Bradley LM: Costimulation via OX40L expressed by B cells is sufficient to determine the extent of primary CD4 cell expansion and Th2 cytokine secretion in vivo. J Exp Med 197:875-883, 2003

    Google Scholar 

  60. Bansal-Pakala P, Jember AG, Croft M: Signaling through OX40 (CD134) breaks peripheral T-cell tolerance. Nat Med 7:907-912, 2001

    Google Scholar 

  61. Crotty S, Kersh EN, Cannons J, Schwartzberg PL, Ahmed R: SAP is required for generating long-term humoral immunity. Nature 421:282-287, 2003

    Google Scholar 

  62. Tsukada N, Akiba H, Kobata T, Aizawa Y, Yagita H, Okumura K: Blockade of CD134 (OX40)-CD134L interaction ameliorates lethal acute graft-versus-host disease in a murine model of allogeneic bone marrow transplantation. Blood 95:2434-2439, 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidefumi Kojima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, H., Kojima, H., Ishii, N. et al. Essential Role of OX40L on B Cells in Persistent Alloantibody Production Following Repeated Alloimmunizations. J Clin Immunol 24, 237–248 (2004). https://doi.org/10.1023/B:JOCI.0000025445.21894.e5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOCI.0000025445.21894.e5

Navigation