Journal of Clinical Immunology

, Volume 24, Issue 3, pp 213–224 | Cite as

Gene Expression Profiling: From Microarrays to Medicine

  • Ashani T. Weeraratna
  • James E. Nagel
  • Valeria de Mello-Coelho
  • Dennis D. Taub
Article

Abstract

With the mapping of the human genome comes the ability to identify genes of interest in specific diseases and the pathways involved therein. Laboratory technology has evolved in parallel, providing us with the ability to assay thousands of these genes at once, a technique known as microarray analysis. The main #x003Fion that this type of technology raises is how we can apply this powerful technology to clinical medicine. Recently, advances in data analysis, as well as standardization of the technology, have allowed us to examine this #x003Fion, and indeed a few clinical trials currently being performed include microarrays as part of their protocol. In this review we outline the microarray technique and describe these types of studies in further detail.

Microarray clinic gene expression review 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Velculescu VE, Zhang L, Vogelstein B, Kinzler KW: Serial analysis of gene expression. Science 270:484-487, 1995Google Scholar
  2. 2.
    Augenlicht LH, Wahrman MZ, Halsey H, Anderson L, Taylor J, Lipkin M: Expression of cloned sequences in biopsies of human colonic tissue and in colonic carcinoma cells induced to differentiate in vitro. Cancer Res 47:6017-6021, 1987Google Scholar
  3. 3.
    Nakanishi T, Oka T, Akagi T: Recent advances in DNA microarrays. Acta Med Okayama 55:319-328, 2001Google Scholar
  4. 4.
    Wheeler DL, Church DM, Federhen S, Lash AE, Madden TL, Pontius JU, Schuler GD, Schriml LM, Sequeira E, Tatusova TA, Wagner L: Database resources of the National Center for Biotechnology. Nucleic Acids Res 31:28-33, 2003Google Scholar
  5. 5.
    Schulze A, Downward J: Navigating gene expression using microarrays—A technology review. Nat Cell Biol 3:E190-E195, 2001Google Scholar
  6. 6.
    Manduchi E, Scearce LM, Brestelli JE, Grant GR, Kaestner KH, Stoeckert CJ, Jr: Comparison of different labeling methods for two-channel high-density microarray experiments. Physiol Genomics 10:169-179, 2002Google Scholar
  7. 7.
    Bertucci F, Bernard K, Loriod B, Chang YC, Granjeaud S, Birnbaum D, Nguyen C, Peck K, Jordan BR: Sensitivity issues in DNA array-based expression measurements and performance of nylon microarrays for small samples. Hum Mol Genet 8:1715-1722, 1999Google Scholar
  8. 8.
    Schena M, Shalon D, Davis RW, Brown PO: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467-470, 1995Google Scholar
  9. 9.
    Lennon GG, Lehrach H: Hybridization analyses of arrayed cDNA libraries. Trends Genet 7:314-317, 1991Google Scholar
  10. 10.
    Carr KM, Bittner M, Trent JM: Gene-expression profiling in human cutaneous melanoma. Oncogene 22:3076-3080, 2003Google Scholar
  11. 11.
    Peterson LE: CLUSFAVOR 5.0: Hierarchical cluster and principal-component analysis of microarray-based transcriptional profiles. Genome Biol 3:SOFTWARE0002, 2002Google Scholar
  12. 12.
    Ringner M, Peterson C: Microarray-based cancer diagnosis with artificial neural networks. Biotechniques (Suppl)34:30-35, 2003Google Scholar
  13. 13.
    Ringner M, Peterson C, Khan J: Analyzing array data using supervised methods. Pharmacogenomics 3:403-415, 2002Google Scholar
  14. 14.
    Pietu G, Alibert O, Guichard V, Lamy B, Bois F, Leroy E, Mariage-Sampson R, Houlgatte R, Soularue P, Auffray C: Novel gene transcripts preferentially expressed in human muscles revealed by quantitative hybridization of a high density cDNA array. Genome Res 6:492-503, 1996Google Scholar
  15. 15.
    Schuchhardt J, Beule D, Malik A, Wolski E, Eickhoff H, Lehrach H, Herzel H: Normalization strategies for cDNA microarrays. Nucleic Acids Res 28:E47, 2000Google Scholar
  16. 16.
    Herzel H, Beule D, Kielbasa S, Korbel J, Sers C, Malik A, Eickhoff H, Lehrach H, Schuchhardt J: Extracting information from cDNA arrays. Chaos 11:98-107, 2001Google Scholar
  17. 17.
    Quackenbush J: Computational analysis of microarray data. Nat Rev Genet 2:418-427, 2001Google Scholar
  18. 18.
    Beissbarth T, Fellenberg K, Brors B, Arribas-Prat R, Boer J, Hauser NC, Scheideler M, Hoheisel JD, Schutz G, Poustka A, Vingron M: Processing and quality control of DNA array hybridization data. Bioinformatics 16:1014-1022, 2000Google Scholar
  19. 19.
    Piper MD, Daran-Lapujade P, Bro C, Regenberg B, Knudsen S, Nielsen J, Pronk JT: Reproducibility of oligonucleotide microarray transcriptome analyses. An interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 277:37001-37008, 2002Google Scholar
  20. 20.
    Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863-14868, 1998Google Scholar
  21. 21.
    Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, Radmacher M, Simon R, Yakhini Z, Ben-Dor A, Sampas N, Dougherty E, Wang E, Marincola F, Gooden C, Lueders J, Glatfelter A, Pollock P, Carpten J, Gillanders E, Leja D, Dietrich K, Beaudry C, Berens M, Alberts D, Sondak V: Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406:536-540, 2000Google Scholar
  22. 22.
    Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES, Golub TR: Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. Proc Natl Acad Sci USA 96:2907-2912, 1999Google Scholar
  23. 23.
    Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM: Systematic determination of genetic network architecture. Nat Genet 22:281-285, 1999Google Scholar
  24. 24.
    Sherlock G: Analysis of large-scale gene expression data. Curr Opin Immunol 12:201-205, 2000Google Scholar
  25. 25.
    Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286:531-537, 1999Google Scholar
  26. 26.
    Crescenzi M, Giuliani A: The main biological determinants of tumor line taxonomy elucidated by a principal component analysis of microarray data. FEBS Lett 507:114-118, 2001Google Scholar
  27. 27.
    Brown MP, Grundy WN, Lin D, Cristianini N, Sugnet CW, Furey TS, Ares M, Jr, Haussler D: Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Natl Acad Sci USA 97:262-267, 2000Google Scholar
  28. 28.
    Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16:906-914, 2000Google Scholar
  29. 29.
    Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC, Gaasenbeek M, Angelo M, Reich M, Pinkus GS, Ray TS, Koval MA, Last KW, Norton A, Lister TA, Mesirov J, Neuberg DS, Lander ES, Aster JC, Golub TR: Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 8:68-74, 2002Google Scholar
  30. 30.
    Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermann F, Berthold F, Schwab M, Antonescu CR, Peterson C, Meltzer PS: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7:673-679, 2001Google Scholar
  31. 31.
    Friedman N, Linial M, Nachman I, Pe'er D: Using Bayesian networks to analyze expression data. J Comput Biol 7:601-620, 2000Google Scholar
  32. 32.
    Broet P, Richardson S, Radvanyi F: Bayesian hierarchical model for identifying changes in gene expression from microarray experiments. J Comput Biol 9:671-683, 2002Google Scholar
  33. 33.
    Carlisle AJ, Prabhu VV, Elkahloun A, Hudson J, Trent JM, Linehan WM, Williams ED, Emmert-Buck MR, Liotta LA, Munson PJ, Krizman DB: Development of a prostate cDNA microarray and statistical gene expression analysis package. Mol Carcinog 28:12-22, 2000Google Scholar
  34. 34.
    Coombes KR, Highsmith WE, Krogmann TA, Baggerly KA, Stivers DN, Abruzzo LV: Identifying and quantifying sources of variation in microarray data using high-density cDNA membrane arrays. J Comput Biol 9:655-669, 2002Google Scholar
  35. 35.
    Lee ML, Kuo FC, Whitmore GA, Sklar J: Importance of replication in microarray gene expression studies: Statistical methods and evidence from repetitive cDNA hybridizations. Proc Natl Acad Sci USA 97:9834-9839, 2000Google Scholar
  36. 36.
    Ball CA, Sherlock G, Parkinson H, Rocca-Sera P, Brooksbank C, Causton HC, Cavalieri D, Gaasterland T, Hingamp P, Holstege F, Ringwald M, Spellman P, Stoeckert CJ, Jr, Stewart JE, Taylor R, Brazma A, Quackenbush J: Standards for microarray data. Science 298:539, 2002Google Scholar
  37. 37.
    Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M: Minimum information about a microarray experiment (MIAME) toward standards for microarray data. Nat Genet 29:365-371, 2001Google Scholar
  38. 38.
    Roses AD: Pharmacogenetics and the practice of medicine. Nature 405:857-865, 2000Google Scholar
  39. 39.
    McCarthy JJ, Hilfiker R: The use of single-nucleotide polymorphism maps in pharmacogenomics. Nat Biotechnol 18:505-508, 2000Google Scholar
  40. 40.
    Stephens JC, Schneider JA, Tanguay DA, Choi J, Acharya T, Stanley SE, Jiang R, Messer CJ, Chew A, Han JH, Duan J, Carr JL, Lee MS, Koshy B, Kumar AM, Zhang G, Newell WR, Windemuth A, Xu C, Kalbfleisch TS, Shaner SL, Arnold K, Schulz V, Drysdale CM, Nandabalan K, Judson RS, Ruano G, Vovis GF: Haplotype variation and linkage disequilibrium in 313 human genes. Science 293:489-493, 2001Google Scholar
  41. 41.
    Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, Sherry S, Mullikin JC, Mortimore BJ, Willey DL, Hunt SE, Cole CG, Coggill PC, Rice CM, Ning Z, Rogers J, Bentley DR, Kwok PY, Mardis ER, Yeh RT, Schultz B, Cook L, Davenport R, Dante M, Fulton L, Hillier L, Waterston RH, McPherson JD, Gilman B, Schaffner S, Van Etten WJ, Reich D, Higgins J, Daly MJ, Blumenstiel B, Baldwin J, Stange-Thomann N, Zody MC, Linton L, Lander ES, Altshuler D: A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928-933, 2001Google Scholar
  42. 42.
    Holden AL: The SNP consortium: Summary of a private consortium effort to develop an applied map of the human genome. Biotechniques (Suppl)32:22-24, 2002Google Scholar
  43. 43.
    Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, Shaw N, Lane CR, Lim EP, Kalyanaraman N, Nemesh J, Ziaugra L, Friedland L, Rolfe A, Warrington J, Lipshutz R, Daley GQ, Lander ES: Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet 22:231-238, 1999Google Scholar
  44. 44.
    Wypgant M: SNP market view: Opportunities, technologies, and products. Biotechniques (Suppl)32:78-86, 2002Google Scholar
  45. 45.
    Hirschhorn JN, Sklar P, Lindblad-Toh K, Lim YM, Ruiz-Gutierrez M, Bolk S, Langhorst B, Schaffner S, Winchester E, Lander ES. SBE-TAGS: An array-based method for efficient single-nucleotide polymorphism genotyping. Proc Natl Acad Sci USA 97:12164-12169, 2000Google Scholar
  46. 46.
    Fan JB, Chen X, Halushka MK, Berno A, Huang X, Ryder T, Lipshutz RJ, Lockhart DJ, Chakravarti A: Parallel genotyping of human SNPs using generic high-density oligonucleotide tag arrays. Genome Res 10:853-860, 2000Google Scholar
  47. 47.
    Buetow KH, Edmonson M, MacDonald R, Clifford R, Yip P, Kelley J, Little DP, Strausberg R, Koester H, Cantor CR, Braun A: High-throughput development and characterization of a genomewide collection of gene-based single nucleotide polymorphism markers by chip-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Proc Natl Acad Sci USA 98:581-584, 2001Google Scholar
  48. 48.
    Lu M, Shortreed MR, Hall JG, Wang L, Berggren T, Stevens PW, Kelso DM, Lyamichev V, Neri B, Smith LM: A surface invasive cleavage assay for highly parallel SNP analysis. Hum Mutat 19:416-422, 2002Google Scholar
  49. 49.
    Kohane IS: Bioinformatics and clinical informatics: The imperative to collaborate. J Am Med Inform Assoc 7:512-516, 2000Google Scholar
  50. 50.
    Ohmine K, Ota J, Ueda M, Ueno S, Yoshida K, Yamashita Y, Kirito K, Imagawa S, Nakamura Y, Saito K, Akutsu M, Mitani K, Kano Y, Komatsu N, Ozawa K, Mano H: Characterization of stage progression in chronic myeloid leukemia by DNA microarray with purified hematopoietic stem cells. Oncogene 20:8249-8257, 2001Google Scholar
  51. 51.
    Zhan F, Hardin J, Kordsmeier B, Bumm K, Zheng M, Tian E, Sanderson R, Yang Y, Wilson C, Zangari M, Anaissie E, Morris C, Muwalla F, van Rhee F, Fassas A, Crowley J, Tricot G, Barlogie B, Shaughnessy J, Jr: Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood 99:1745-1757, 2002Google Scholar
  52. 52.
    Korenberg MJ: Prediction of treatment response using gene expression profiles. J Proteome Res 1:55-61, 2002Google Scholar
  53. 53.
    van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Bernards R, Friend SH: Expression profiling predicts outcome in breast cancer. Breast Cancer Res 5:57-58, 2002Google Scholar
  54. 54.
    Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME, Kim JY, Goumnerova LC, Black PM, Lau C, Allen JC, Zagzag D, Olson JM, Curran T, Wetmore C, Biegel JA, Poggio T, Mukherjee S, Rifkin R, Califano A, Stolovitzky G, Louis DN, Mesirov JP, Lander ES, Golub TR: Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415:436-442, 2002Google Scholar
  55. 55.
    Cunliffe H, Ringnér M, Bilke S, Walker RL, Cheung JM, Chen Y, Meltzer PS: The gene expression response of breast cancer to growth regulators: Patterns and correlation with tumor expression profiles. Cancer Res 63:7158-7166, 2003Google Scholar
  56. 56.
    Murphy GM, Jr, Pollock BG, Kirshner MA, Pascoe N, Cheuk W, Mulsant BH, Reynolds CF, III: CYP2D6 genotyping with oligonucleotide microarrays and nortriptyline concentrations in geriatric depression. Neuropsychopharmacology 25:737-743, 2001Google Scholar
  57. 57.
    Sreekumar R, Halvatsiotis P, Schimke JC, Nair KS: Gene expression profile in skeletal muscle of type 2 diabetes and the effect of insulin treatment. Diabetes 51:1913-1920, 2002Google Scholar
  58. 58.
    Sawiris GP, Sherman-Baust CA, Becker KG, Cheadle C, Teichberg D, Morin PJ: Development of a highly specialized cDNA array for the study and diagnosis of epithelial ovarian cancer. Cancer Res 62:2923-2928, 2002Google Scholar
  59. 59.
    Alizadeh A, Eisen M, Davis RE, Ma C, Sabet H, Tran T, Powell JI, Yang L, Marti GE, Moore DT, Hudson JR, Jr, Chan WC, Greiner T, Weisenburger D, Armitage JO, Lossos I, Levy R, Botstein D, Brown PO, Staudt LM: The lymphochip: A specialized cDNA microarray for the genomic-scale analysis of gene expression in normal and malignant lymphocytes. Cold Spring Harb Symp Quant Biol 64:71-78, 1999Google Scholar
  60. 60.
    Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson J Jr, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein D, Brown P, Staudt LM: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503-511, 2000Google Scholar
  61. 61.
    An HJ, Cho NH, Lee SY, Kim IH, Lee C, Kim SJ, Mun MS, Kim SH, Jeong JK: Correlation of cervical carcinoma and precancerous lesions with human papillomavirus (HPV) genotypes detected with the HPV DNA chip microarray method. Cancer 97:1672-1680, 2003Google Scholar
  62. 62.
    Kim CJ, Jeong JK, Park M, Park TS, Park TC, Namkoong SE, Park JS: HPV oligonucleotide microarray-based detection of HPV genotypes in cervical neoplastic lesions. Gynecol Oncol 89:210-217, 2003Google Scholar
  63. 63.
    Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim W, Rollin PE, Dowell SF, Ling AE, Humphrey CD, Shieh WJ, Guarner J, Paddock CD, Rota P, Fields B, DeRisi J, Yang JY, Cox N, Hughes JM, LeDuc JW, Bellini WJ, Anderson LJ: A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348:1953-1966, 2003Google Scholar
  64. 64.
    Wang D, Coscoy L, Zylberberg M, Avila PC, Boushey HA, Ganem D, DeRisi JL: Microarray-based detection and genotyping of viral pathogens. Proc Natl Acad Sci USA 99:15687-15692, 2002Google Scholar
  65. 65.
    Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, Penaranda S, Bankamp B, Maher K, Chen MH, Tong S, Tamin A, Lowe L, Frace M, DeRisi JL, Chen Q, Wang D, Erdman DD, Peret TC, Burns C, Ksiazek TG, Rollin PE, Sanchez A, Liffick S, Holloway B, Limor J, McCaustland K, Olsen-Rasmussen M, Fouchier R, Gunther S, Osterhaus AD, Drosten C, Pallansch MA, Anderson LJ, Bellini WJ: Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300:1394-1399, 2003Google Scholar
  66. 66.
    Lewohl JM, Wang L, Miles MF, Zhang L, Dodd PR, Harris RA: Gene expression in human alcoholism: microarray analysis of frontal cortex. Alcohol Clin Exp Res 24:1873-1882, 2000Google Scholar
  67. 67.
    Mayfield RD, Lewohl JM, Dodd PR, Herlihy A, Liu J, Harris RA: Patterns of gene expression are altered in the frontal and motor cortices of human alcoholics. J Neurochem 81:802-813, 2002Google Scholar
  68. 68.
    Barrans JD, Allen PD, Stamatiou D, Dzau VJ, Liew CC: Global gene expression profiling of end-stage dilated cardiomyopathy using a human cardiovascular-based cDNA microarray. Am J Pathol 160:2035-2043, 2002Google Scholar
  69. 69.
    Hwang JJ, Allen PD, Tseng GC, Lam CW, Fananapazir L, Dzau VJ, Liew CC: Microarray gene expression profiles in dilated and hypertrophic cardiomyopathic endstage heart failure. Physiol Genomics 10:31-44, 2002Google Scholar
  70. 70.
    Shalev A, Pise-Masison CA, Radonovich M, Hoffmann SC, Hirshberg B, Brady JN, Harlan DM: Oligonucleotide microarray analysis of intact human pancreatic islets: identification of glucose-responsive genes and a highly regulated TGFbeta signaling pathway. Endocrinology 43:3695-3698, 2002Google Scholar
  71. 71.
    Sreekumar R, Halvatsiotis P, Schimke JC, Nair KS: Gene expression profile in skeletal muscle of type 2 diabetes and the effect of insulin treatment. Diabetes 51:1913-1920, 2002Google Scholar
  72. 72.
    Clement K, Viguerie N, Diehn M, Alizadeh A, Barbe P, Thalamas C, Storey JD, Brown PO, Barsh GS, Langin D: In vivo regulation of human skeletal muscle gene expression by thyroid hormone. Genome Res 12:281-291, 2002Google Scholar
  73. 73.
    Guo X, Liao K: Analysis of gene expression profile during 3T3-L1 preadipocyte differentiation. Gene 251:45-53, 2000Google Scholar
  74. 74.
    Han E, Hilsenbeck SG: Array-based gene expression profiling to study aging. Mech Ageing Dev 122:999-1018, 2001Google Scholar
  75. 75.
    Ly DH, Lockhart DJ, Lerner RA, Schultz PG: Mitotic misregulation and human aging. Science 287:2486-2492, 2000Google Scholar
  76. 76.
    Boldrick JC, Alizadeh AA, Diehn M, Dudoit S, Liu CL, Belcher CE, Botstein D, Staudt LM, Brown PO, Relman DA: Stereotyped and specific gene expression programs in human innate immune responses to bacteria. Proc Natl Acad Sci U S A 99:972-977, 2002Google Scholar
  77. 77.
    Rus V, Atamas SP, Shustova V, Luzina IG, Selaru F, Magder LS, Via CS: Expression of cytokine-and chemokine-related genes in peripheral blood mononuclear cells from lupus patients by cDNA array. Clin Immunol 102:283-290, 2002Google Scholar
  78. 78.
    Beitner-Johnson D, Seta K, Yuan Y, Kim H, Rust RT, Conrad PW, Kobayashi S, Millhorn DE: Identification of hypoxia-responsive genes in a dopaminergic cell line by subtractive cDNA libraries and microarray analysis. Parkinsonism Relat Disord 7:273-281, 2001Google Scholar
  79. 79.
    Lock C, Hermans G, Pedotti R, Brendolan A, Schadt E, Garren H, Langer-Gould A, Strober S, Cannella B, Allard J, Klonowski P, Austin A, Lad N, Kaminski N, Galli SJ, Oksenberg JR, Raine CS, Heller R, Steinman L: Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8:500-508, 2002Google Scholar
  80. 80.
    MacDonald TJ, Brown KM, LaFleur B, Peterson K, Lawlor C, Chen Y, Packer RJ, Cogen P, Stephan DA: Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nat Genet 29:143-152, 2001Google Scholar
  81. 81.
    Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson J Jr, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein D, Brown PO, Staudt LM: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503-511, 2000Google Scholar
  82. 82.
    Ohmine K, Ota J, Ueda M, Ueno S, Yoshida K, Yamashita Y, Kirito K, Imagawa S, Nakamura Y, Saito K, Akutsu M, Mitani K, Kano Y, Komatsu N, Ozawa K, Mano H: Characterization of stage progression in chronic myeloid leukemia by DNA microarray with purified hematopoietic stem cells. Oncogene 20:8249-8257, 2001Google Scholar
  83. 83.
    Loftus SK, Chen Y, Gooden G, Ryan JF, Birznieks G, Hilliard M, Baxevanis AD, Bittner M, Meltzer P, Trent J, Pavan W: Informatic selection of a neural crest-melanocyte cDNA set for microarray analysis. Proc Natl Acad Sci U S A 96:9277-9280, 1999Google Scholar
  84. 84.
    Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, Radmacher M, Simon R, Yakhini Z, Ben-Dor A, Sampas N, Dougherty E, Wang E, Marincola F, Gooden C, Lueders J, Glatfelter A, Pollock P, Carpten J, Gillanders E, Leja D, Dietrich K, Beaudry C, Berens M, Alberts D, Sondak V: Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406:536-540, 2000Google Scholar
  85. 85.
    Clark EA, Golub TR, Lander ES, Hynes RO: Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406:532-535, 2000Google Scholar
  86. 86.
    Gupta RA, Polk DB, Krishna U, Israel DA, Yan F, DuBois RN, Peek RM Jr: Activation of peroxisome proliferator-activated receptor gamma suppresses nuclear factor kappa B-mediated apoptosis induced by Helicobacter pylori in gastric epithelial cells. J. Biol Chem 276:31059-31066, 2001Google Scholar
  87. 87.
    Yanagawa R, Furukawa Y, Tsunoda T, Kitahara O, Kameyama M, Murata K, Ishikawa O, Nakamura Y: Genome-wide screening of genes showing altered expression in liver metastases of human colorectal cancers by cDNA microarray. Neoplasia 3:395-401, 2001Google Scholar
  88. 88.
    Hedenfalk I, Duggan D, Chen Y, Radmacher M, Bittner M, Simon R, Meltzer P, Gusterson B, Esteller M, Kallioniemi OP, Wilfond B, Borg A, Trent J: Gene-expression profiles in hereditary breast cancer. N Engl J Med 344:539-548, 2001Google Scholar
  89. 89.
    Van T Veer LJ, Dai H, Van De Vijver MJ, He YD, Hart A, Mao M, Peterse HL, Van Der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH: Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530-535, 2002Google Scholar
  90. 90.
    Hippo Y, Taniguchi H, Tsutsumi S, Machida N, Chong JM, Fukayama M, Kodama T, Aburatani H: Global gene expression analysis of gastric cancer by oligonucleotide microarrays. Cancer Res 62:233-240, 2002Google Scholar
  91. 91.
    Okabe H, Satoh S, Kato T, Kitahara O, Yanagawa R, Yamaoka Y, Tsunoda T, Furukawa Y, Nakamura Y: Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: Identification of genes involved in viral carcinogenesis and tumor progression. Cancer Res 61:2129-2137, 2001Google Scholar
  92. 92.
    Bubendorf L, Kolmer M, Kononen J, Koivisto P, Mousses S, Chen Y, Mahlamaki E, Schraml P, Moch H, Willi N, Elkahloun AG, Pretlow TG, Gasser TC, Mihatsch MJ, Sauter G, Kallioniemi OP: Hormone therapy failure in human prostate cancer: analysis by complementary DNA and tissue microarrays. J Natl Cancer Inst 91:1758-1764, 1999Google Scholar
  93. 93.
    Mousses S, Wagner U, Chen Y, Kim JW, Bubendorf L, Bittner M, Pretlow T, Elkahloun AG, Trepel JB, Kallioniemi OP: Failure of hormone therapy in prostate cancer involves systematic restoration of androgen responsive genes and activation of rapamycin sensitive signaling. Oncogene 20:6718-6723, 2001Google Scholar
  94. 94.
    Skubitz KM, Skubitz AP: Differential gene expression in renal-cell cancer. J Lab Clin Med 140:52-64, 2002Google Scholar
  95. 95.
    Khan J, Simon R, Bittner M, Chen Y, Leighton SB, Pohida T, Smith PD, Jiang Y, Gooden GC, Trent JM, Meltzer PS: Gene expression profiling of alveolar rhabdomyosarcoma with cDNA microarrays. Cancer Res 58:5009-5013, 1998Google Scholar
  96. 96.
    Mok SC, Chao J, Skates S, Wong K, Yiu GK, Muto MG, Berkowitz RS, Cramer DW: Prostasin, a potential serum marker for ovarian cancer: Identification through microarray technology. J Natl Cancer Inst 93:1458-1464, 2001Google Scholar
  97. 97.
    Nuwaysir EF, Bittner M, Trent J, Barrett JC, Afshari CA: Microarrays and toxicology: The advent of toxicogenomics. Mol Carcinog 24:153-159, 1999Google Scholar
  98. 98.
    Waring JF, Halbert DN: The promise of toxicogenomics. Curr Opin Mol Ther 4:229-235, 2002Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Ashani T. Weeraratna
    • 1
  • James E. Nagel
    • 1
  • Valeria de Mello-Coelho
    • 1
  • Dennis D. Taub
    • 1
  1. 1.Clinical Immunology Section, Laboratory of Immunology, Gerontology Research CenterNational Institute on Aging, Nathan Shock DrBaltimore

Personalised recommendations