Advertisement

Journal of Clinical Immunology

, Volume 24, Issue 2, pp 185–196 | Cite as

Active Crohn's Disease Patients Show a Distinctive Expansion of Circulating Memory CD4+CD45RO+CD28null T Cells

  • Jaime García De Tena
  • Luis Manzano
  • Juan Carlos Leal
  • Esther San Antonio
  • Verónica Sualdea
  • Melchor Álvarez-Mon
Article

Abstract

In a previous study we found an expansion of circulating memory (CD45RO+) CD4+ T cells in patients with Crohn's disease (CD). The aim of this work was to investigate the phenotypic and functional characteristics of this T-cell subset in CD. We analyzed in peripheral blood CD4+CD45RO+ T cells from CD patients the expression of surface markers associated to immune activation, costimulation, and apoptosis. In sorted CD4+CD45RO+ T cells apoptosis was quantified by fluorescent annexin V binding. Healthy subjects and patients with ulcerative colitis and acute bacterial enterocolitis served as control groups. An increased percentage of memory CD4+CD45RO+ T cells lacking the expression of costimulatory receptor CD28 was detected in patients with active CD when compared to the other groups evaluated. This expanded CD4+CD45RO+CD28null T-cell subset expressed mostly the effector-cell marker CD57+. Both CD28 downregulation and CD57 expression correlated to CDAI and surrogate markers of disease activity. These phenotypic changes observed on CD4+CD45RO+ T cells from active CD returned to values similar to healthy controls after clinical remission. Moreover, this memory CD28νll T-cell subset might express more intracytoplasmic TNF and IFN-γ than their CD28+ counterpart. Significantly lower frequencies of memory CD4+CD45RO+ T cells expressing CD95 apoptosis receptor were found in patients with active CD. Moreover, sorted CD4+CD45RO+and CD4+CD45RO+ CD28null T cells from patients with active CD exhibited a lower apoptotic rate than that found in healthy controls and inactive CD patients. According to our data, circulating T lymphocytes from active CD patients show distinctive phenotypic and functional changes, characterized by an expansion of memory CD4+CD45RO+CD28null T cells expressing effector-associated cell surface molecules and displaying enhanced resistance to apoptosis.

Inflammatory bowel disease Crohn's disease CD4 T cells CD45RO CD28 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Fiocchi C: Inflammatory bowel disease: Etiology and pathogenesis. Gastroenterology 115:182-205, 1998Google Scholar
  2. 2.
    Elson CO: The immunology of inflammatory bowel disease. In Inflammatory Bowel Disease, JB Kirsner (ed). New York, Raven Press, 2000, pp 208-239Google Scholar
  3. 3.
    Podolsky DK: Inflammatory bowel disease. N Engl J Med 347:417-429, 2002Google Scholar
  4. 4.
    Sanahan F: Crohn's disease. Lancet 359:62-69, 2002Google Scholar
  5. 5.
    Dutton RW, Bradley LM, Swain L: T cell memory. Annu Rev Immunol 16:201-223, 1998Google Scholar
  6. 6.
    Sprent J, Surh CD: Generation and maintenance of memory T cells. Curr Opin Immunol 13:248-254, 2001Google Scholar
  7. 7.
    Sprent J, Surh CD: T cell memory. Annu Rev Immunol 20:551-579, 2002Google Scholar
  8. 8.
    Roman LI, Manzano L, De La Hera A, Abreu L, Rossi I, 2 Expanded CD4+CD45RO+ phenotype and defective proliferative response in T lymphocytes from patients with Crohn's disease. Gastroenterology 110:1008-1019, 1996Google Scholar
  9. 9.
    Meenan J, Spaans J, Grools TA, Pals ST, Tytgat GN, van Deventer SJ: Altered expression of α4β7, a gut homing integrin, by circulating and mucosal T cells in colonic mucosal inflammation. Gut 40:241-246, 1997Google Scholar
  10. 10.
    Mariani P, Bachetoni A, D'Alessandro M, Lomanto D, Mazzocchi P, Speranza V: Effector Th-1 cells with cytotoxic function in the intestinal lamina propria of patients with Crohn's disease. Dig Dis Sci 45:2029-2035, 2000Google Scholar
  11. 11.
    Chakir J, Laviolette M, Turcotte H, Boutet M, Boutet LP: Cytokine expression in the lower airways of nonasthmatics subjects with allergic rhinitis: Influence of natural allergen exposure. J Allergy Clin Immunol 106:904-910, 2000Google Scholar
  12. 12.
    Wu XM, Osoegawa M, Yamasaki K, Kawano Y, Ochi H, Horiuchi I, Minohara M, Ohyagi Y, Yamada T, Kira JI: Flow cytometric differentiation of Asian and Western types of multiple sclerosis, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and hyperIgEaemic myelitis by analyses of memory CD4 positive T cell subsets and NK cell subsets. J Neurol Sci 177:24-31, 2000Google Scholar
  13. 13.
    Crucian B, Dunne P, Friedman H, Ragsdale R, Pross S, Widen R: Alterations in levels of CD28-/CD8+ suppressor cell precursor and CD45RO+/CD4+ memory T lymphocytes in the peripheral blood of multiple sclerosis patients. Clin Diagn Lab Immunol 2:249-252, 1995Google Scholar
  14. 14.
    Mahmoud F, Abul H, al Saleh Q, Hssab el Naby H, Kajeji M, Haines D, Burleson J, Morgan G: Elevated B-lymphocyte levels in lesional tissue of non-arthritic psoriasis. J Dermatol 26:428-433, 1999Google Scholar
  15. 15.
    Granstein RD: New treatments for psoriasis. N Engl J Med 345:284-287, 2001Google Scholar
  16. 16.
    Kweon MN, Takahashi I, Yamamoto H, Jang MH, Suenobu N, Kiyono H: Development of antigen induced colitis in SCID mice reconstituted with spleen derived memory type CD4+ CD45RB+ T cells. Gut 50:299-306, 2002Google Scholar
  17. 17.
    Lennard-Jones JE: Classification of inflammatory bowel disease. Scand J Gastroenterol 24(Suppl 170):2-6, 1989Google Scholar
  18. 18.
    Best WR, Becktel JM, Singleton JW, Kern F: Development of a Crohn's disease activity index. National Cooperative Crohn's Disease Study. Gastroenterology; 70:439-444, 1976Google Scholar
  19. 19.
    Truelove SC, Witts LJ: Cortisone in ulcerative colitis: Final report on a therapeutic trial. BMJ 2:1041-1048, 1955Google Scholar
  20. 20.
    Garcia-Suarez J, Prieto A, Reyes E, Manzano L, Merino JL, Alvarez-Mon M: Severe chronic autoimmune thrombocytopenic purpura is associated with an expansion of CD56+ CD3- natural killer cells subset. Blood 82:1538-1545, 1993Google Scholar
  21. 21.
    Prieto A, Reyes E, Garcia-Suarez J, Carrion F, Hernandez MP, Chafer J, Alvarez-Mon M: A low blood lymphocyte count is associated with an expansion of activated cytotoxic T lymphocytes in patients with B cell chronic lymphocytic leukemia. Eur J Haematol 59:89-99, 1997Google Scholar
  22. 22.
    Prieto A, Reyes E, Diaz D, Hernandez-Fuentes MP, Monserrat J, Perucha E, Muñoz L, Vangioni R, de La Hera A, Orfao A, Alvarez-Mon M: A new method for the simultaneous analysis of growth and death of immunophenotypically defined cells in culture. Cytometry 39:56-66, 2000Google Scholar
  23. 23.
    Prieto A, Diaz D, Barcenilla H, Garcia-Suarez J, Reyes E, Monserrat J, San Antonio E, Melero D, de la Hera A, Orfao A, Alvarez-Mon M: Apoptotic rate: A new indicator for the quantification of the incidence of apoptosis in cell cultures. Cytometry 48:185-193, 2002Google Scholar
  24. 24.
    Hamann D, Baars PA, Rep MH, Hooibrink B, Kerkhof-Garde SR, Klein MR, van Lier RA: Phenotypic and functional separation of memory and effector human CD8+ T cells. J Exp Med 186:1407-1418, 1997Google Scholar
  25. 25.
    Lenschow DJ, Walunas TL, Bluestone JA: CD28/B7 system of T cell costimulation. Annu Rev Immunol 14:233-258, 1996Google Scholar
  26. 26.
    June CH, Bluestone JA, Nadler LM, Thompson CB. The B7 and CD28 receptor families: Immunol Today 15:321-331, 1994Google Scholar
  27. 27.
    Seder RA, Germain RN, Linsley PS, Paul WE: CD28-mediated costimulation of interleukin 2 (IL-2) production plays a critical role in T cell priming for IL-4 and interferon gamma production. J Exp Med 179:299-304, 1994Google Scholar
  28. 28.
    Rulifson IC, Sperling AI, Fields PE, Fitch FW, Bluestone JA: CD28 co-stimulation promotes the production of Th2 cytokines. J Immunol 158:658-665, 1997Google Scholar
  29. 29.
    Warnier G, Duffour MT, Uyttenhove C, Gajewski TF, Lurquin C, Haddada H, Perricaudet M, Boon T: Induction of a cytolytic T-cell response in mice with a recombinant adenovirus coding for tumor antigen P815A. Int J Cancer 67:303-310, 1996Google Scholar
  30. 30.
    Martens P, Goronzy JJ, Schaid D, Weyand CM: Expansion of unusual CD4+ T cells in severe rheumatoid arthritis. Arthritis Rheum 40:1106-1114, 1997Google Scholar
  31. 31.
    Markovic-Plese S, Cortese I, Wandinger KP, McFarland HF, Martin R: CD4+CD28- costimulation-independent T cells in multiple sclerosis. J Clin Invest 108:1185-1194, 2001Google Scholar
  32. 32.
    Moosig F, Csernok E, Wang G, Gross WL: Costimulatory molecules in Wegener's granulomatosis (WG): Lack of expression of CD28 and preferential up-regulation of its ligands B7-1 (CD80) and B7-2 (CD86) on T cells. Clin Exp Immunol 114:113-118, 1998Google Scholar
  33. 33.
    Liuzzo G, Kopecky SL, Frye RL, O'Fallon WM, Maseri A, Goronzy JJ, Weyand CM: Perturbation of the T-cell repertoire in patients with unstable angina. Circulation 100:2135-2139, 1999.Google Scholar
  34. 34.
    Vallejo AN, Nestel AR, Schirmer M, Weyand CM, Goronzy JJ: Aging-related deficiency of CD28 expression in CD4+ T cells is associated with the loss of gene-specific nuclear factor binding activity J Biol Chem 273:8119-8129, 1998Google Scholar
  35. 35.
    Schmidt D, Goronzy JJ, Weyand CM: CD4+CD7-CD28- T cells are expanded in rheumatoid arthritis and are characterized by autoreactivity. J Clin Invest 97:2027-2037, 1996Google Scholar
  36. 36.
    Park W, Weyand CM, Schmidt D, Goronzy JJ: Co-stimulatory pathways controlling activation and peripheral tolerance of human CD4+CD28- T cells. Eur J Immunol 27:1082-1090, 1997Google Scholar
  37. 37.
    Duftner C, Goldberger C, Falkenbach A, Würzner R, Falkensammer B, Pfeiffer KP, Maerker-Hermann E, Schirmer M: Prevalence, clinical relevance and characterization of circulating cytotoxic CD4+CD28- T cells in ankylosing spondylitis. Arthritis Res Ther 5:292-300, 2003Google Scholar
  38. 38.
    Komocsi A, Lamprecht P, Csernok E, Mueller A, Holl-Ulrich K, Seitzer U, Moosig F, Schnabel A, Gross WL: Peripheral blood and granuloma CD4(+)CD28(-) T cells are a major source of interferon-gamma and tumor necrosis factor-alpha in Wegener's granulomatosis. Am J Pathol 160:1717-1724, 2002Google Scholar
  39. 39.
    Namekawa T, Wagner UG, Goronzy JJ, Weyand CM: Functional subsets of CD4 T cells in rheumatoid synovitis. Arthritis Rheum 41:2108-2116, 1998Google Scholar
  40. 40.
    Nakajima T, Goek O, Zhang X, Kopecky SL, Frye RL, Goronzy JJ, Weyand CM: De novo expression of killer immunoglobulin-like receptors and signaling proteins regulates the cytotoxic function of CD4 T cells in acute coronary syndromes. Circ Res 93:106-113, 2003Google Scholar
  41. 41.
    Dubey C, Croft M, Swain L: Naive and effector CD4 T cells differ in their requirements for T cell receptor versus costimulatory signals. J Immunol 157:3280-3289, 1996Google Scholar
  42. 42.
    Hogan LH, Markofski W, Bock A, Barger B, Morrisey JD, Sandor M: Mycobacterium bovis BCG-induced granuloma formation depends on gamma interferon and CD40 ligand but does not require CD28. Infect Immun 69:2596-2603, 2001Google Scholar
  43. 43.
    Kern F, Ode-Hakim S, Vogt K, Hoflich C, Reinke P, Volk HD: The enigma of CD57+CD28- T cell expansion. Clin Exp Immunol 104:180-184, 1996Google Scholar
  44. 44.
    Imberti L, Sottini A, Signorini S, Gorla R, Primi D: Oligoclonal CD4+ CD57+ T-cell expansions contribute to the imbalanced T-cell receptor repertoire of rheumatoid arthritis patients. Blood 89:2822-2232, 1997Google Scholar
  45. 45.
    Maeda T, Yamada H, Nagamine R, Shuto T, Nakashima Y, Hirata G, Iwamoto Y: Involvement of CD4+, CD57+ T cells in the disease activity of rheumatoid arthritis. Arthritis Rheum 46:379-384, 2002Google Scholar
  46. 46.
    Iwatani Y, Hidaka Y, Matsuzka F, Kuma K, Amino N: Intrathyroidal lymphocyte subsets, including unusual CD4+ CD8+ cells and CD3loTCR alpha beta lo/-CD4-CD8- cells, in autoimmune thyroid disease. Clin Exp Immunol 93:430-436, 1993Google Scholar
  47. 47.
    Giscombe R, Nityanand S, Lewin N, Grunewald J, Lefvert AK: Expanded T cell populations in patients with Wegener's granulomatosis: Characteristics and correlates with disease activity. J Clin Immunol 18:404-413, 1998Google Scholar
  48. 48.
    Mackay CR: Migration pathways and immunologic memory among T lymphocytes. Semin Immunol 4:51-58, 1992Google Scholar
  49. 49.
    Autschbach F, Schurmann G, Qiao L, Merz H, Wallich R, Meuer SC: Cytokine messenger RNA expression and proliferation status of intestinal mononuclear cells in noninflamed gut and Crohn's disease. Virchows Arch 426:51-60, 1995.Google Scholar
  50. 50.
    Ghosh S, Goldin E, Gordon FH, Malchow HA, Rask-Madsen J, Rutgeerts P, Vyhnalek P, Zaradova Z, Palmer T, Donoghue S: Natalizumab for active Crohn's disease. N Engl J Med 348:24-32, 2003Google Scholar
  51. 51.
    Ellis CN, Krueger GG: Treatment of chronic plaque psoriasis by selective targeting of memory effector T lymphocytes. N Engl J Med 345:248-255, 2001Google Scholar
  52. 52.
    Kraan MC, van Kuijk AW, Dinant HJ, Goedkoop AY, Smeets TJ, de Rie MA, Dijkmans BA, Vaishnaw AK, Bos JD, Tak PP. Alefacept treatment in psoriatic arthritis: Reduction of the effector T cell population in peripheral blood and synovial tissue is associated with improvement of clinical signs of arthritis. Arthritis Rheum 46:2776-2784, 2002Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Jaime García De Tena
    • 1
    • 3
  • Luis Manzano
    • 2
    • 4
  • Juan Carlos Leal
    • 5
  • Esther San Antonio
    • 2
  • Verónica Sualdea
    • 2
  • Melchor Álvarez-Mon
    • 2
    • 6
  1. 1.Laboratorio de Inmunología Clínica y OncologíaUnidad asociada I+D del Consejo Superior de Investigaciones CientíficasSpain
  2. 2.Unidad asociada ISpain
  3. 3.Departamento de MedicinaUniversidad de AlcaláAlcalá de HenaresSpain
  4. 4.Servicio de Medicina InternaHospital Universitario Ramón y CajalMadridSpain
  5. 5.GastroenterologíaHospital Universitario Príncipe de AsturiasAlcalá de HenaresSpain
  6. 6.Spain

Personalised recommendations