Skip to main content
Log in

Synchronous Scan and Excitation-Emission Matrix Fluorescence Spectroscopy of Water-Soluble Organic Compounds in Atmospheric Aerosols

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Three-dimensional excitation–emission matrix (EEM) fluorescence spectra of water-soluble organic compounds (WSOC) from aerosol samples were measured and compared with those reported in the literature for natural dissolved organic matter. The EEM profiles of the WSOC presented three characteristic excitation/emission (λExcEm) peaks: 240/405 nm, 310/405 nm and 280/340 nm. The fluorescence intensities at λExcEm≈240/405 nm and λExcEm≈310/405 nm are located at wavelengths shorter than those reported for aquatic humic substances, indicating a smaller content of both aromatic structures and condensed unsaturated bond systems in the WSOC fraction. The EEM profiles of fractions obtained by the isolation procedure of the WSOC by the XAD resins showed that a fractionation has occurred and the XAD-8 eluate is highly representative of the total WSOC of collected aerosol. Synchronous scan spectra were more detailed than conventional fluorescence emission spectra, appearing more suitable for studying multicomponent samples such as the WSOC from atmospheric aerosols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, S. R. and Reynolds, D. M., 1995: Synchronous fluorescence spectroscopy of wastewater and some potential constituents, Wat. Res. 29, 1599–1602.

    Google Scholar 

  • Alves, C. A., 2001: Origin and characterization of organic matter from atmospheric aerosols, Ph.D Thesis (in Portuguese), University of Aveiro, Portugal.

  • Alves, C. A., Pio, C. A. and Duarte, A. C., 2001: Composition of extractable organic matter of air particles from rural and urban Portuguese areas, Atmos. Environ. 35, 5485–5496.

    Google Scholar 

  • Chen, J., Gu, B., LeBoeuf, E. J., Pan, H. and Dai, S., 2002: Spectroscopic characterization of the structural and functional properties of natural organic matter fractions, Chemosphere 48, 59–68.

    Google Scholar 

  • Coble, P. G., Schultz, C. and Mopper, K., 1993: Fluorescence contouring analysisDOCIntercalibration Experiment samples: A comparison of techniques, Marine Chemistry 41, 173–178.

    Google Scholar 

  • Decesari, S., Facchini, M. C., Fuzzi, S. and Tagliavini, E., 2000: Characterization of water-soluble organic compounds in atmospheric aerosols: A new approach, J. Geophys. Res. 105, 1481–1489.

    Google Scholar 

  • Duarte, R. M. B. O., Santos, E. B. H. and Duarte, A. C., 2003: Structural characteristics of ultrafiltration fractions of fulvic and humic acids isolated from an eucalyptus bleached Kraft pulp mill effluent, Wat. Res. 37,4073–4080.

    Google Scholar 

  • Duarte, R. M. B. O. and Duarte, A. C., 2003: Non-ionic solid sorbents (XAD resins): A new approach for the isolation and fractionation of the water-soluble organic compounds from atmospheric aerosols, Journal of Atmospheric Chemistry (submitted).

  • Esteves, V. I., 1995: Isolation and characterisation of humic substances from different aquatic environments, Ph. D Thesis(in Portuguese), University of Aveiro, Portugal.

  • Facchini, M. C., Fuzzi, S., Zappoli, S., Andracchio, A., Gelencsér, A., Kiss, G., Krivácsy, Z., Mészáros, E., Hansson, H. C., Alsberg, T. and Zebühr, Y., 1999: Partitioning of the organic aerosol component between fog droplets and interstitial air, J. Geophys. Res. 104, 26821–26832.

    Google Scholar 

  • Gorzelska, K., Galloway, J. N., Watterson, K. and Keene, W. C., 1992: Water-soluble primary amine compounds in rural continental precipitation, Atmos. Environ. 26A, 1005–1018.

    Google Scholar 

  • Havers, N., Burba, P., Lambert, J. and Klockow, D., 1998: Spectroscopic characterization of humiclike substances in airborne particulate matter, J. Atmos. Chem. 29, 45–54.

    Google Scholar 

  • Hautala, K., Peuravuori, J. and Pihlaja, K., 2000: Measurement of aquatic humus content by spectroscopic analyses, Wat. Res. 34, 246–258.

    Google Scholar 

  • Krivácsy, Z., Kiss, G., Varga, B., Galambos, I., Sárvári, Zs., Gelencsér, A., Molnár, A</del>Á., Fuzzi, S., Facchini, M. C., Zappoli, S., Andracchio, A., Alsberg, T., Hansson, H. C. and Persson, L., 2000: Study of humic-like substances in fog and interstitial aerosol by size-exclusion chromatography and capillary electrophoresis, Atmos. Environ. 34, 4273–4281.

    Google Scholar 

  • Krivácsy, Z., Gelencsér, A., Kiss, G., Mészáros, E., Molnár, Á., Hoffer, A., Mészáros, T., Sárvári, Zs., Temesi, D., Varga, B., Baltensperger, U., Nyeki, S. and Weingartner, E., 2001: Study on the chemical character of water soluble organic compounds in fine atmospheric aerosol at the Jungfraujoch, J. Atmos. Chem. 39, 235–259.

    Google Scholar 

  • Matthews, B. J. H., Jones, A. C., Theodorou, N. K. and Tudhope, A.W., 1996:Excitation-Emission-Matrix fluorescence spectroscopy applied to humic acid bands in coral reefs,Marine Chemistry 55, 317–332.

    Google Scholar 

  • McGregor, K. G. and Anastasio, C., 2001: Chemistry of fog waters in California's Central Valley: 2. Photochemical transformations of amino acids and alkyl amines, Atmos. Environ. 35, 1091–1104.

    Google Scholar 

  • McKnight, D. M., Boyer, E. W., Westerhokk, P. K., Doran, P. T., Kulbe, T. and Andersen, D. T., 2001: Spectrofluorometric characterisation of dissolved organic matter for indication of precursor organic material and aromaticity, Limnol. Oceanogra. 46, 38–48.

    Google Scholar 

  • Miano, T. M., Sposito, G. and Martín, J. P., 1988: Fluorescence spectrocopy of humic substances, Soil Sci. America J. 52, 1016–1019.

    Google Scholar 

  • Parlanti, E., Belin, C., Texier, H., Ewald, M. and Lamotte, M., 1997: Interpretation of the fluorescence signature of the marine and continental waters in the Gironde and Seine Estuaries, in J. Drozd, S. S. Gonet, N. Senesi and J. Weber (eds), The Role of Humic Substances in the Ecosystems and in Environmental Protection, pp. 603–609, IHSS-Polish Society of Humic Substances.

  • Parlanti, E., Wörz, K., Geoffroy, L. and Lamotte, M., 2000: Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs, Org. Geochem 31, 1765–1781.

    Google Scholar 

  • Parlanti, E., Morin, B. and Vacher, L., 2002: Combined 3D-spectrofluorometry, high performance liquid chromatography and capillary electrophoresis for the characterization of dissolved organic matter in natural waters, Org. Geochem 33, 221–236.

    Google Scholar 

  • Peuravuori, J. and Pihlaja, K., 1997: Molecular size distribution and spectroscopic properties of aquatic humic substances, Anal. Chim. Acta 337, 133–149.

    Google Scholar 

  • Peuravuori, J., Koivikko, R. and Pihlaja, K., 2002: Characterization, differentiation and classification of aquatic humic matter separated by different sorbents: Synchronous fluorescence spectroscopy, Wat. Res. 36, 4552–4562.

    Google Scholar 

  • Pullin, M. J. and Cabaniss, S. E., 1995: Rank analysis of the pH-dependent synchronous fluorescence spectra of six standard humic substances, Environ. Sci. Technol. 29, 1460–1467.

    Google Scholar 

  • Santos, E. B. H., Filipe, O. M. S., Duarte, R. M. B. O., Pinto, H. and Duarte A. C., 2001: Fluorescence as a tool for tracing the organic contamination from pulp mill effluents in surface waters, Acta Hydrochem. Et. Hydrobiol. 28, 364–371.

    Google Scholar 

  • Saxena, P., Hildemann, L. M., 1996:Water-soluble organics in atmospheric particles:Acritical review of the literature and application of thermodynamics to identify candidate compounds, J. Atmos.Chem. 24, 57–109.

    Google Scholar 

  • Senesi, N., Miano, T. M., Provenzano, M. R. and Brunetti, G., 1989: Spectroscopy and compositional comparative characterisation of I.H.S.S. reference and standard fulvic and humic acids of various origin, Sci. Total Environ. 81/82, 143–156.

    Google Scholar 

  • Simoneit, B. R. T., Schauer, J. J., Nolte C. G., Oros, D. R., Elias, V. O., Fraser, M. P., Rogge, W. F.and Cass, G. R., 1999: Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles, Atmos. Environ. 33, 173–182.

    Google Scholar 

  • Varga, B., Kiss, G., Ganszky, I., Gelencsér A. and Krivácsy, Z., 2001: Isolation of water-soluble organic matter from atmospheric aerosol, Talanta 55, 561–572.

    Google Scholar 

  • Wangersky, P. J., 1993: Dissolved Organic Carbon Methods: A Critical Review, Mar. Chem. 41, 61–74.

    Google Scholar 

  • Westerhoff, P., Chen, W. and Esparza, M., 2001: Fluorescence analysis of a standard fulvic acid and tertiary treated wastewater, J. Environ. Quality 30, 2037–2046.

    Google Scholar 

  • Zappoli, S., Andracchio, A., Fuzzi, S., Facchini, M. C., Gelencsér, A., Kiss, G., Krivácsy, Z., Molnár, Á., Mészáros, E., Hansson, H. C., Rosman, K. and Zebühr, Y., 1999: Inorganic, organic and macromolecular components of fine aerosol in different areas of Europe in relation to their water solubility, Atmos. Environ. 33, 2733–2743.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duarte, R.M., Pio, C.A. & Duarte, A.C. Synchronous Scan and Excitation-Emission Matrix Fluorescence Spectroscopy of Water-Soluble Organic Compounds in Atmospheric Aerosols. Journal of Atmospheric Chemistry 48, 157–171 (2004). https://doi.org/10.1023/B:JOCH.0000036845.82039.8c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOCH.0000036845.82039.8c

Navigation