Skip to main content
Log in

An Examination of the Oxidation of Elemental Mercury in the Presence of Halide Surfaces

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Recent field investigations in polar regions, and over the ocean, have suggested that elemental mercury (Hg0) can be photochemically oxidized in the presence of reactive halogen species that are formed in the presence of salt particles, typically through a reactive catalytic cycle involving ozone destruction. Furthermore, these studies have suggested that the Hg0 oxidation reaction involves the reaction with reactive bromine species such as Br, BrO, and Br2. To investigate these reactions in more detail, we performed experiments using a quartz reactive chamber so that the oxidation of Hg0, and the formation of ionic Hg products, could be examined in detail under different reaction scenarios, but at realistic levels of Hg. To examine if the reactions were enhanced by the presence of deliquescent salt surfaces, as has been postulated to be the case for the formation of reactive halogens, one surface of the cell was coated with either NaCl or NaBr for some experiments. In addition to laboratory experiments with a Xenon lamp, outdoor experiments under natural light were also conducted. The results of these studies showed that oxidation of Hg0 did not occur in the dark, except in the presence of a deliquescent NaBr salt surface. The rate of oxidation was slow in the absence of salt surfaces, and in the absence of low wavelength light (<324 nm). In the presence of NaCl surfaces, oxidation rates were at least two orders of magnitude faster, but the rate was further increased in the presence of NaBr, by a further factor of 25. With outdoor light, while the rates of oxidation were lower, the results were similar overall. The results are discussed in terms of the reactions occurring and the mechanisms of Hg0 oxidation. Finally, the implications of these reactions to the overall global Hg cycle are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ariya, P. A., Khalizov, A., and Gidas, A., 2002: Reaction of gaseous mercury with atomic and molecular halogens, kinetics, products studies, and atmospheric implications, J. Phys. Chem.A 106, 7310–7320.

    Google Scholar 

  • Ayers, G. P., Gillett, R. W., Cainey, J. M., and Dick, A. L., 1999: Chloride and bromide loss from sea-salt particles in the southern ocean air, J. Atmos. Chem. 33, 299–319.

    Google Scholar 

  • Balabanov, N. B. and Peterson, K. A., 2003: Mercury and reactive halogens: The thermochemistry of Hg+ {Cl2, Br2, BrCl, ClO, and BrO}, J. Phys. Chem. A 107, 7465–7470.

    Google Scholar 

  • Barrie, L. A., Bottenheim, J. W., Schnell, R. C., Crutzen, P. J., and Rasmussen, R. A., 1988: Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere, Nature 334, 8–141.

    Google Scholar 

  • Bloom, N. and Fitzgerald, W. F., 1988: Determination of volatile mercury species at the picogram level by low-temperature gas chromatography with cold-vapor atomic fluorescence detection, Anal. Chim. Acta 208,151–161.

    Google Scholar 

  • Bottenheim, J.W., Fuentes, J. D., Tarasick, D.W., and Anlauf, K. G., 2002: Ozone in the Arctic lower troposphere during winter and spring 2002 (ALERT 2002), Atmos. Environ. 36, 2535–2544.

    Google Scholar 

  • Bullock, O. R., 2000: Modeling assessment of transport and deposition patterns of anthropogenic mercury air emissions in the United States and Canada, Sci. Total Environ. 259(1-3), 145–157.

    Google Scholar 

  • Calvert, J. G. and Lindberg, S. E., 2003: A modeling study of the mechanism of the halogen-ozone-mercury homogeneous reactions in the troposphere during the polar spring, Atmos. Environ. 37, 4467–4481.

    Google Scholar 

  • Class, T. H. and Ballschmiter, K., 1988: Chemistry of organic traces in air. 8. Sources and distribution of bromochloromethanes and bromochloromethanes in marine air and surfacewater of the Atlantic Ocean, J. Atmos. Chem. 6(1-2), 35–46.

    Google Scholar 

  • DeHann, D. O., Brauers, T., Oum, K., Stutz, J., Nordmeyer, T., and Finlayson-Pitts, B. J., 1999: Heterogeneous chemistry in the troposphere, experimental approaches and applications to the chemistry of sea salt particles, Int. Rev. Phys. Chem. 18, 343–385.

    Google Scholar 

  • Dickerson, R. R., Rhoads, K. P., Carsey, T. P., Oltmans, S. J., Burrows, J. P., and Crutzen, P. J., 1999: Ozone in the remote marine boundary layer, a possible role for halogens, J. Geophys. Res. 104, 21385–21395.

    Google Scholar 

  • Disselkamp, R. S., Chapman, E. G., Barchet, W. R., Colson, S. D., and Howd, C. D., 1999: BrCl production in NaBr/NaCl/HNO3/O3 solutions representative of sea-salt aerosols in the marine boundary layer, Geophys. Res. Lett. 26, 2183–2186.

    Google Scholar 

  • Ebinghaus, R., Kock, H. H., Temme, C., Einax, J. W., Löwe, A. G., Richter, A., Burrows, J. P., and Schroeder, W. H., 2002: Antarctic springtime depletion of atmospheric mercury, Environ. Sci.Technol. 36, 1238–1244.

    Google Scholar 

  • Ebinghaus, R., Tripathi, R. M., Wallschläger, D., and Lindberg, S. E., 1999: Natural and anthropogenic mercury sources and their impact on the air-surface exchange of mercury on regional and global scales, in R. Ebinghaus, R. R. Turner, L. D. de Lacerda, O. Vasiliev, and W. Salomons (eds.), Mercury Contaminated Sites, Characterization, Risk Assessment and Remediation, Springer, Berlin, Germany, pp. 1–51.

  • Fickert, S., Adams, J. W., and Crowley, J. M., 1999: Activation of Br2 and BrCl via uptake of HOBr onto aqueous salt solutions, J. Geophys. Res. 104, 23719–23727.

    Google Scholar 

  • Finlayson-Pitts, B. and Hemminger, J. C., 2000: Physical chemistry of airborne sea salt particles and their components, J. Phys. Chem. 104, 11463–11477.

    Google Scholar 

  • Finlayson-Pitts, B. J., Livingston, F. E., and Berko, H. N., 1990: Ozone destruction and bromine photochemistry at ground level in the Arctic spring, Nature 343, 622–625.

    Google Scholar 

  • Finlayson-Pitts, B. J. and Pitts, J. N., 2000: Chemistry of the Upper and Lower Atmosphere, Academic Press, San Diego.

    Google Scholar 

  • Fisher, M. and Warneck, P., 1996: Photodecomposition of nitrite and undissociated nitrous acid in aqueous solution, J. Phys. Chem. 100(48), 18749–18756.

    Google Scholar 

  • Fitzgerald, W. F., Engstrom, D. R., Mason, R. P., and Nater, E. A., 1998: The case for atmospheric mercury contamination in remote areas, Environ. Sci. Technol. 32, 1–7.

    Google Scholar 

  • Foster, K. L., Plastridge, R. A., Bottenheim, J. W., Shepson, P. B., Finlayson-Pitts, B. J., and Spicer, C. W., 2001: The role of Br2 and BrCl in surface ozone destruction at polar sunrise, Science 291, 471–474.

    Google Scholar 

  • Galbally, I. E., Bentley, S. T., and Meyer, C. P., 2000: Mid-latitude marine boundary-layer ozone destruction at visible sunrise observed at Cape Grim, Tasmania, 41?S, Geophys. Res. Lett. 27, 3841–3844.

    Google Scholar 

  • Hall, B., 1995: The gas phase oxidation of elemental mercury by ozone, Water Air Soil Pollut. 80, 301–315.

    Google Scholar 

  • Hausmann, M. and Platt, U., 1994: Spectroscopic measurement of bromine oxide and ozone in the high Arctic during polar sunrise experiment 1992, J. Geophys. Res. Atmos. 99(D12), 25399–25413.

    Google Scholar 

  • Hebestreit, K., Stutz, J., Rosen, D., Matveiv, V., Peleg, M., Luria, M., and Platt, U., 1999: DOAS measurements of tropospheric bromine oxide in mid-latitudes, Science 283, 55–57.

    Google Scholar 

  • Hedgecock, I. M. and Pirrone, N., 2001: Mercury photochemistry in the marine boundary layermodeling studies suggest the in situ production of reactive gas phase mercury, Atmos. Environ. 35, 3055–3062.

    Google Scholar 

  • Hedgecock, I. M., Pirrone, N., Sprovieri, F., and Pesenti, E., 2003: Reactive gaseous mercury in the marine boundary layer, modeling and experimental evidence of its formation in the Mediterranean region, Atmos. Environ. 37, S41–S49.

    Google Scholar 

  • Hedgecock, I. M. and Pirrone, N., 2004: Chasing quicksilver, modeling the atmospheric lifetime of Hg0 (g) in the marine boundary layer at various latitudes, Environ. Sci. Technol. 38, 69–76.

    Google Scholar 

  • Hirokawa, J., Onaka, K., Kajii, Y., and Akimoto, H., 1998: Heterogeneous processes involving sodium halide particles and ozone: Molecular bromine release in the marine boundary layer in the absence of nitrogen oxides, Geophys. Res. Lett. 25, 2449–2452.

    Google Scholar 

  • Khalizov, A. F., Viswanathan, B., Larregaray, P., and Ariya, P. A., 2003: A theoretical study on the reactions of Hg with halogens: Atmospheric implications, J. Phys. Chem. 107, 6360–6365.

    Google Scholar 

  • Kley, D., Crutzen, P. J., Smit, H. G. J., Vömel, H., Oltmans, S. J., Grassl, H., and Ramanathan, V., 1996: Observations of near-zero ozone concentrations over the convective Pacific, effect on air chemistry, Science 274, 230–233.

    Google Scholar 

  • Knipping, E. M., Lakin, M. J., Foster, K. L., Jungwrith, P., Tobias, D. J., Gerber, R. B., Dabdub, D., and Finlayson-Pitts, B. J., 2000: Experiments and simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols, Science 288, 301–306.

    Google Scholar 

  • Lalonde, J. D., Amyot, M., Kraepiel, A. M. L., and Morel, F. M. M., 2001: Photooxidation of Hg(0) in artificial and natural waters, Environ. Sci. Technol. 35, 1367–1372.

    Google Scholar 

  • Lamborg, C. H., Fitzgerald, W. F., O'Donnell, J., Torgersen, T., 2002:Anon-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients, Geochim. Cosmoschim. Acta 66, 1105–1118.

    Google Scholar 

  • Lamborg, C. H., Rolfhus, K. R., Fitzgerald, W. F., and Kim, G., 1999: The atmospheric cycling and air-sea exchange of mercury species in the south and equatorial Atlantic Ocean, Deep-Sea Res.II 46, 957–977.

    Google Scholar 

  • Landis, M. S., Stevens, R. K., Schaedlich, F., and Prestbo, E. M., 2002: Development and characterization of an annular denuder methodology for the measurement of divalent inorganic reactive gaseous mercury in ambient air, Environ. Sci. Technol. 36, 3000–3009.

    Google Scholar 

  • Laurier, F. J. G., Mason, R. P., Whalin, L., and Kato, S., 2003: Reactive gaseous mercury formation in the North Pacific Ocean's marine boundary layer: A potential role of halogen chemistry, J.Geophys. Res. 108(D17), art. No. 4529.

    Google Scholar 

  • Lin, C. and Pehkonen, S. O., 1999: The chemistry of atmospheric mercury, a review, Atmos. Environ. 33, 2067–2079.

    Google Scholar 

  • Lindberg, S. E., Brooks, S., Lin, C.-J., Scott, K., Landis, M., Stevens, R., Goodsite, M., and Richter, A., 2002: Dynamic oxidation of gaseous mercury in the Arctic troposphere at polar sunrise, Environ.Sci. Technol. 36, 1245–1256.

    Google Scholar 

  • Lindberg, S. E. and Stratton, W. J., 1998: Atmospheric mercury speciation, concentration and behavior of reactive gaseous mercury in ambient air, Environ. Sci. Technol. 32, 49–57.

    Google Scholar 

  • Lockhart, W. L., Wilkinson, P., Billeck, B. N., Hunt, R. V., Wagemann, R., and Brunskill, G. L., 1995: Current and historical inputs of mercury to high-latitude lakes in Canada and to Hudson Bay, Water Air Soil Pollut. 80, 603–610.

    Google Scholar 

  • Malcolm, E. G. and Keeler, G. J., 2003: The effect of the coastal environment on the atmospheric mercury, J. Geophys. Res. 108(D12), art. No. 4357, doi: 10.1029/2002JD003084.

  • Mason, R. P., Fitzgerald, W. F., and Morel, F. M. M., 1994: The biogeochemical cycling of elemental mercury, anthropogenic influences, Geochim. Cosmochim. Acta 58, 3191–3198.

    Google Scholar 

  • Mason, R. P., Lawson, N. M., Lawrence, A. L., Leaner, J. J., Lee, J. G., and Sheu, G.-R., 1999: Mercury in the Chesapeake Bay, Mar. Chem. 65, 77–96.

    Google Scholar 

  • Mason, R. P., Lawson, N. M., and Sheu, G.-R., 2001: Mercury in the Atlantic Ocean, factors controlling air-sea exchange of mercury and its distribution in the upper waters, Deep-Sea Res. II 48, 2829–2853.

    Google Scholar 

  • Mason, R. P., Lawson, N. M., and Sullivan, K. A., 1997: Atmospheric deposition to the Chesapeake Bay watershed-regional and local sources, Atmos. Environ. 31, 3531–3540.

    Google Scholar 

  • Mason, R. P. and Sheu, G. R., 2002: Role of the ocean in the global mercury cycle, Glob. Biogeochem.Cycle 16(4), art. No. 1093.

    Google Scholar 

  • Mason, R. P. and Sullivan, K. A., 1997: Mercury in Lake Michigan, Environ. Sci. Technol. 31, 942–947.

    Google Scholar 

  • McConnell, G. S. et al., 1992: Photochemical bromine production implicated in Arctic boundary-layer ozone depletion, Nature 355, 150–152.

    Google Scholar 

  • Mozurkewich, M., 1995: Mechanism for the release of halogens from sea-salt particles by free-radical reactions, J. Geophys. Res. 100, 14199–14207.

    Google Scholar 

  • Nagao, I., Matsumoto, K., and Tanaka, H., 1999: Sunrise ozone destruction found in sub tropical marine boundary layer, Geophys. Res. Lett. 26, 3377–3380.

    Google Scholar 

  • Oum, K. W., Lakin, M. J., DeHann, D. O., Brauers, T., and Finlayson-Pitts, B. J., 1998: Formation of molecular chlorine from the photolysis of ozone and aqueous sea-salt particles, Science 279, 74–77.

    Google Scholar 

  • Sander, R., Rudlich, Y., Glasow, R. V., and Cruzten, P. J., 1999: The role of BrNO3 in the marine tropospheric chemistry, a model study, Geophys. Res. Lett. 18, 2857–2860.

    Google Scholar 

  • Sander, R., Keene, W. C., Pzenny, A. A. P., Arimoto, R., Ayers, G. P., Baboukas, E., Cainey, J. M., Crutzen, P. J., Duce, R. A., Honninger, G., Huebert, B. J., Maenhaut, W., Mihalopoulos, N., Turekian, V. C., and Van Dingenen, R., 2003: Inorganic bromine in the marine boundary layer: A critical review. Atmos. Chem. Phys. 3, 1301–1336.

    Google Scholar 

  • Sanemasa, I., 1975: The solubility of elemental mercury vapor in water, Bull. Chem. Soc. Jpn. 48, 1795–1798.

    Google Scholar 

  • Schall, C., Laturnus, C. F., and Heumann, K. G., 1994: Biogenic volatile organoiodine and organobromine compounds released from polar macroalgae, Chemosphere 28(7), 1315–1324.

    Google Scholar 

  • Schroeder, W. H., Anlauf, K. G., Barrie, L. A., Lu, J. Y., Steffen, A., Schneeberger, D. R., and Berg, T., 1998: Arctic springtime depletion of mercury, Nature 394, 331–332.

    Google Scholar 

  • Schroeder, W. H., Yarwood, G., and Niki, H., 1991: Transformation processes involving mercury species in the atmosphere-results from a literature survey, Water Air Soil Pollut. 56, 653–666.

    Google Scholar 

  • Seinfeld, J. H. and Pandis, S. N., 1998: Atmospheric Chemistry and Physics from Air Pollution to Climate Change, John Wiley and Sons, New York.

    Google Scholar 

  • Shahin, U. M., Holsen, T. M., and Odabasi, M., 2002: Dry deposition measured with a water surface sampler, a comparison to modeled results, Atmos. Environ. 36(20), 3267–3276.

    Google Scholar 

  • Sheu, G.-R. and Mason, R. P., 2001: An examination of methods for the measurements of reactive gaseous mercury in the atmosphere, Environ. Sci. Technol. 35, 1209–1216.

    Google Scholar 

  • Sheu, G.-R., Mason, R. P., and Lawson, N. M., 2001: Speciation and distribution of atmospheric mercury over the northern Chesapeake Bay, in R. L. Lipnick, R. P. Mason, M. L. Philips, and C. U. Pittman Jr. (eds.), Chemicals in the Environment, Fate, Impacts, and Remediation, ACS Symposium Series 806, American Chemical Society, Washington, DC, pp. 223–242.

    Google Scholar 

  • Sliger, R. N., Kramlich, J. C., and Marinov, N. M., 2000: Towards the development of a chemical kinetic model for the homogeneous oxidation of mercury by chlorine species, Fuel Process.Technol. 65-66, 423–438.

    Google Scholar 

  • Sommar, J., Gårdfeldt, K., Strömberg, D., and Feng, X., 2001: A kinetic study of the gas-phase reaction between the hydroxyl radical and atomic mercury, Atmos. Environ. 35, 3049–3054.

    Google Scholar 

  • Sommar, J., Hallquist, M., Ljungström, E., and Lindqvist, O., 1997: On the gas phase reactions between volatile biogenic mercury species and the nitrate radical, J. Atmos. Chem. 27, 233–247.

    Google Scholar 

  • Spicer, C. W., Chapman, E. G., Finlayson-Pitts, B. J., Plastridge, R. A., Hubbe, J. M., Fast, J. D., and Berkowitz, C. M., 1998: Unexpectedly high concentrations of molecular chlorine in coastal air,Nature 394, 353–356.

    Google Scholar 

  • Sprovieri, F., Pirrone, N., Gärrdfeldt, K., and Sommar, J., 2003: Mercury speciation in the marine boundary layer along a 6000 km cruise path around the Mediterranean Sea, Atmos. Environ. 37, S63–S71.

    Google Scholar 

  • Temme, C., Einax, J. W., Ebinghaus, R., and Schroeder, W. H., 2003: Measurements of atmospheric species at a coastal site in the Antarctic and over the South Atlantic Ocean during polar summer, Environ. Sci. Technol. 37, 22–31.

    Google Scholar 

  • Tokos, J. J. S., Hall, B., Calhoun, J. A., and Prestbo, E., 1998:Homogeneous gas-phase reaction of Hg0 with H2O2, O3, CH3 I, and (CH3)2S, implications for atmospheric Hg cycling, Atmos.Environ. 32, 823–827.

    Google Scholar 

  • Vogt, R., Crutzen, P. J., and Sander, R., 1996: A mechanism for halogen release from sea salt aerosol in the remote marine boundary layer, Nature 383, 327–330.

    Google Scholar 

  • von Glasow, R., Sander, R., Bott, A., and Crutzen, P. J., 2002: Modeling halogen chemistry in the marine boundary layer. 1. Cloud free MBL, J. Geophys. Res. 107(D17), art. No. 4341.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheu, GR., Mason, R.P. An Examination of the Oxidation of Elemental Mercury in the Presence of Halide Surfaces. Journal of Atmospheric Chemistry 48, 107–130 (2004). https://doi.org/10.1023/B:JOCH.0000036842.37053.e6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOCH.0000036842.37053.e6

Navigation