Advertisement

Journal of Oceanography

, Volume 60, Issue 3, pp 563–568 | Cite as

Artificial Upwelling of Deep Seawater Using the Perpetual Salt Fountain for Cultivation of Ocean Desert

  • Shigenao MaruyamaEmail author
  • Koutaro Tsubaki
  • Keisuke Taira
  • Seigo Sakai
Article

Abstract

Deep seawater in the ocean contains a great deal of nutrients. Stommel et al. have proposed the notion of a “perpetual salt fountain” (Stommel et al., 1956). They noted the possibility of a permanent upwelling of deep seawater with no additional external energy source. If we can cause deep seawater to upwell extensively, we can achieve an ocean farm. We have succeeded in measuring the upwelling velocity by an experiment in the Mariana Trench area using a special measurement system. A 0.3 m diameter, 280 m long soft pipe made of PVC sheet was used in the experiment. The measured data, a verification experiment, and numerical simulation results, gave an estimate of upwelling velocity of 212 m/day.

Deep seawater upwelling perpetual salt fountain natural convection heat transfer enhancement of bio-production flow measurement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aihara, T., I. Tanasawa and I. Michiyoshi (1976): Progress of Heat Transfer 4. Yokendo, Tokyo (in Japanese).Google Scholar
  2. Aihara, T., S. Maruyama and J. S. Choi (1986): Proc. 8th International Heat Transfer Conf., 4, 1581–1586.Google Scholar
  3. Berger, W. H. and G. Wefer (1991): Discussion of the iron hypothesis. Limnol. Oceanogr., 36, 1899–1918.CrossRefGoogle Scholar
  4. Huppert, H. E. and J. S. Turner (1981): Double-diffusive convection. J. Fluid Mech., 106, 299–329.CrossRefGoogle Scholar
  5. Maruyama, S., M. Ishikawa and K. Taira (2001a): Japanese patent, 2001-336479.Google Scholar
  6. Maruyama, S., K. Nakano, N. Takahashi, S. Sakai and K. Taira (2001b): Study on upwelling of deep seawater by the perpetual salt fountain. Proc. 38th National Heat Transfer Symp. Japan, 3, 753–754 (in Japanese).Google Scholar
  7. Nishio, S., X.-H. Shi and W.-M. Zhang (1995): Oscillation-induced heat transport: heat transport characteristics along liquid-columns of oscillation-controlled heat transport tubes. Int. J. Heat Mass Transfer, 38, 2457–2470.CrossRefGoogle Scholar
  8. Nozaki, Y. (1998): Global Warming and the Oceans: The Role of Carbon Cycling. Univ. of Tokyo Press, Tokyo (in Japanese).Google Scholar
  9. Otsuka, K., A. Bando and H. Inoue (2000): A study on floating-type deep-seawater upwelling system. OTEC, 8, 43–48 (in Japanese).Google Scholar
  10. Stommel, H., A. B. Arons and D. Blanchard (1956): An ocean curiosity: the perpetual salt fountain. Deep-Sea Res., 3, 152–153.CrossRefGoogle Scholar
  11. Takahashi, M. and K. Iseki (2000): Deep seawater as resource of the 21st century. Kaiyo, 22, 5–10 (in Japanese).Google Scholar
  12. Takahashi, N., S. Maruyama, S. Sakai and K. Taira (2002): A numerical analysis of natural convection using temperature and concentration differences. Mem. Inst. Fluid Sci., Tohoku Univ., 13, 21–30 (in Japanese).Google Scholar

Copyright information

© The Oceanographic Society of Japan 2004

Authors and Affiliations

  • Shigenao Maruyama
    • 1
    Email author
  • Koutaro Tsubaki
    • 1
  • Keisuke Taira
    • 2
  • Seigo Sakai
    • 3
  1. 1.Institute of Fluid ScienceTohoku UniversitySendaiJapan
  2. 2.Japan Society for the Promotion of ScienceTokyoJapan
  3. 3.Graduate School of EngineeringYokohama National UniversityYokohamaJapan

Personalised recommendations