Skip to main content

Advertisement

Log in

Export Production in the Subarctic North Pacific over the Last 800 kyrs: No Evidence for Iron Fertilization?

  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

The subarctic North Pacific is a high nitrate-low chlorophyll (HNLC) region, where phytoplankton growth rates, especially those of diatoms, are enhanced when micronutrient Fe is added. Accordingly, it has been suggested that glacial Fe-laden dust might have increased primary production in this region. This paper reviews published palaeoceanographic records of export production over the last 800 kyrs from the open North Pacific (north of ∼35°N). We find different patterns of export production change over time in the various domains of the North Pacific (NW and NE subarctic gyres, the marginal seas and the transition zone). However, there is no compelling evidence for an overall increase in productivity during glacials in the subarctic region, challenging the paradigm that dust-born Fe fertilization of this region has contributed to the glacial draw down of atmospheric CO2. Potential reasons for the lack of increased glacial export production include the possibility that Fe-fertilization rapidly drives the ecosystem towards limitation by another nutrient. This effect would have been exacerbated by an even more stable mixed layer compared to today.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aumont, O., E. Maier-Reimer, S. Blain and P. Monfray (2003): An ecosystem model of the global ocean including Fe, Si, P colimitation. Global Biogeochem. Cycles, 17(2), doi:10.1029/2001/GB001745.

  • Bacon, M. P. (1984): Glacial to interglacial changes in carbonate and clay sedimentation in the Atlantic Ocean estimated from 230 Th measurements. Isotope Geoscience, 2, 97–111.

    Google Scholar 

  • Barnola, J. M., D. Raynaud, Y. S. Korotkevich and C. Lorius (1987): Vostok ice core provides 160, 000-year record of atmospheric CO2. Nature, 329, 408–414.

    Article  Google Scholar 

  • Biscaye, P. E., F. E. Grousset, M. Revel, S. V. d. Gaast, G. A. Zielinski, A. Vaars and G. Kukla (1997): Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core, Summit, Greenland. J. Geophys. Res.-Part C, 102(12), 26,765–26,781.

    Google Scholar 

  • Bishop, J. K. B., R. E. Davis and J. T. Sherman (2002): Robotic observations of dust storm enhancement of carbon biomass in the North Pacific. Science, 298, 817–821.

    Article  Google Scholar 

  • Bopp, L., K. E. Kohfeld, C. L. Quéré and O. Aumont (2003): Dust impact on marine biota and atmospheric CO2 during glacial periods. Paleoceanography, 18(2), doi:10.1029/ 2002PA000810.

  • Boyd, P. and P. J. Harrison (1999): Phytoplankton dynamics in the NE subarctic Pacific. Deep-Sea Res. II, 46(11-12), 2405–2432.

    Article  Google Scholar 

  • Boyd, P. W., D. L. Muggli, D. E. Varela, R. H. Goldblatt, R. Chretien, K. J. Orians and P. J. Harrison (1996): In vitro iron enrichment experiments in the NE subarctic Pacific. Mar. Ecol. Prog. Ser., 136, 179–193.

    Google Scholar 

  • Broecker, W. S. (1982): Glacial to interglacial changes in ocean chemistry. Prog. Oceanogr., 11, 151–197.

    Article  Google Scholar 

  • Buesseler, K. O. and P. W. Boyd (2003): Will ocean fertilization work? Science, 300, 67–68.

    Article  Google Scholar 

  • Buesseler, K. O., R. T. Barber, M.-L. Dickson, M. R. Hiscock, J. K. Moore and R. Sambrotto (2003): The effect of marginal ice-edge dynamics on production and export in the Southern Ocean along 170W. Deep-Sea Res. II, 50, 579–603.

    Article  Google Scholar 

  • Calvert, S. E. and N. B. Price (1983): Geochemistry of Namibian Shelf sediments. p. 337–375. In Coastal Upwelling, ed. by E. Suess and J. Thiede, Plenum Publishing Corporation, New York.

    Google Scholar 

  • Calvert, S. E., R. M. Bustin and T. F. Pedersen (1992): Lack of evidence for enhanced preservation of sedimentary organic matter in the oxygen minimum of the Gulf of California. Geology, 20, 757–760.

    Article  Google Scholar 

  • Calvert, S. E., T. F. Pedersen, P. H. Naidu and U. v. Stackelberg (1995): On the organic carbon maximum on the continental slope of the eastern Arabian Sea. J. Mar. Res., 53, 269–296.

    Article  Google Scholar 

  • Charette, M. A. and K. O. Buesseler (2000): Does iron fertilization lead to rapid carbon export in the Southern Ocean. Geochemistry Geophysics Geosystems, 1 (paper number 2000GC000069).

  • Chiba, S., T. Ono, K. Tadokoro, T. Midorikawa and T. Saino (2004): Increased stratification and decreased lower trophic level productivity in the Oyashio region of the North Pacific: A 30-year retrospective study. J. Oceanogr., 60, this issue, 149–162.

    Article  Google Scholar 

  • CLIMAP, P. M. (1981): Maps of Northern and Southern Hemisphere Continental Ice, Sea Ice, and Sea Surface Temperatures in August for the modern and the last glacial maximum. Geol. Soc. Map and Chart Series, MC-36.

  • Coale, K. H., S. E. Fitzwater, R. M. Gordon, K. S. Johnson and R. T. Barber (1996): Control of community growth and export production by upwelled iron in the equatorial Pacific Ocean. Nature, 379, 1996.

  • Crosta, X., J.-J. Pichon and L. H. Burckle (1998): Reappraisal of Antarctic seasonal sea-ice at the Last Glacial Maximum. Geophys. Res. Lett., 25(14), 2703–2706.

    Article  Google Scholar 

  • De Vernal, A. and T. F. Pedersen (1997): Micropaleontology and palynology of core PAR87A-10: A 23,000 year record of paleoenvironmental changes in the Gulf of Alaska, northeast Pacific. Paleoceanography, 12(6), 821–830.

    Article  Google Scholar 

  • Denman, K. L. and A. E. Gargett (1988): Multiple thermoclines are barriers to vertical exchange in the subarctic Pacific during SUPER, May 1984. J. Mar. Res., 46, 77–103.

    Google Scholar 

  • Duce, R. A. and N. W. Tindale (1991): Atmospheric transport of iron and its deposition in the ocean. Limnol. Oceanogr., 36(8), 1715–1726.

    Google Scholar 

  • Dymond, J. and R. Collier (1996): Particulate barium fluxes and their relationships to biological productivity. Deep-Sea Res., 43(4-6), 1283–1308.

    Article  Google Scholar 

  • Dymond, J., E. Suess and M. Lyle (1992): Barium in deep-sea sediments: A geochemical proxy for paleoproductivity. Paleoceanography, 7(2), 163–181.

    Google Scholar 

  • Emile-Geay, J., M. A. Cane, N. Naik, R. Seager, A. C. Clement and A. van Geen (2003): Warren revisited: Atmospheric freshwater fluxes and "Why is no deep water formed in the North Pacific." J. Geophys. Res., 108(C6), 3178.

    Article  Google Scholar 

  • Firme, G. F., E. L. Rue, D. A. Weeks, K. W. Bruland and D. A. Hutchins (2003): Spatial and temporal variability in phytoplankton iron limitation along the California coast and consequences for Si, N, and C biogeochemistry. Global Biogeochem. Cycles, 17(2), 289–303.

    Google Scholar 

  • François, R., M. Frank, M. M. Rutgers van der Loeff and M. Bacon (2003): 230Th-normalization: an essential tool for interpreting sedimentary fluxes during the late Quaternary. Paleoceanography (in press).

  • Freeland, H., K. Denman, C. S. Wong, F. Whitney and R. Jacques (1998): Evidence of change in the winter mixed layer in the Northeast Pacific Ocean. Deep-Sea Res., 44, 2117–2129.

    Google Scholar 

  • Fung, I. Y., S. K. Meyn, I. Tegen, S. C. Doney, J. G. John and J. K. B. Bishop (2000): Iron supply and demand in the upper ocean. Global Biogeochem. Cycles, 14(1), 281.

    Article  Google Scholar 

  • Ganachaud, A. (2003): Large-scale mass transports, water mass formation, and diffusivities estimated from World Ocean Circulation experiment (WOCE) hydrographic data. J. Geophys. Res. 108(C7), 3213, doi:10.1029/2002JC001565.

    Article  Google Scholar 

  • Ganeshram, R. S., S. E. Calvert, T. F. Pedersen and G. L. Cowie (1999): Factors controlling the burial of organic carbon in laminated and bioturbated sediments off NW Mexico: Implications for hydrocarbon preservation. Geochim. Cosmochim. Acta, 63(11/12), 1723–1734.

    Article  Google Scholar 

  • Gargett, A. E. (1991): Physical processes and the maintenance of nutrient-rich euphotic zones. Limnol. Oceanogr., 38(8), 1527–1545.

    Google Scholar 

  • Gingele, F. X., M. Zabel, S. Kasten, W. J. Bonn and C. C. Nurnberg (1999): Biogenic barium as a proxy for paleoproductivity: methods and limitations of application. p. 345–364. In Use of Proxies in Paleoceanography: Examples from the South Atlantic, ed. by G. Fischer and G. Wefer, Springer-Verlag, Berlin.

    Google Scholar 

  • Glover, D. M., J. S. Wroblewski and C. R. McClain (1994): Dynamics of the transition zone in coastal zone color scanner-sensed ocean color in the North Pacific during oceanographic spring. J. Geophys. Res., 99(C4), 7501–7511.

    Article  Google Scholar 

  • Gorbarenko, S. A. (1996): Stable isotope and lithologic evidence of late-glacial and Holocene oceanography of the Northwestern Pacific and its marginal Seas. Quaternary Res., 46, 230–250.

    Article  Google Scholar 

  • Harrison, P. J., P. W. Boyd, D. E. Varela, S. Takeda, A. Shiomoto and T. Odate (1999): Comparison of factors controlling phytoplankton productivity in the NE and the NW subarctic Pacific gyres. Prog. Oceanogr., 43, 205–234.

    Article  Google Scholar 

  • Harrison, P. J., F. A. Whitney, A. Tsuda, H. Saito and K. Tadokoro (2004): Nutrient and plankton dynamics in the NE and NW gyres of the subarctic Pacific Ocean. J. Oceanogr., 60, this issue, 93–117.

    Article  Google Scholar 

  • Hartnett, H. E., R. G. Keil, J. I. Hedges and A. H. Devol (1998): Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature, 391, 572–574.

    Article  Google Scholar 

  • Haug, G. H., M. A. Maslin, M. Sarnthein, R. Stax and R. Tiedemann (1995): Evolution of Northwest Pacific sedimentation patterns since 6 Ma (Site 882). p. 293–314. In Proceedings of the Ocean Drilling Program, Sci. Results, Vol.145, ed. by D. K. Rea, I. A. Basov, D. W. Stoll and J. F. Allen, College Station TX (Ocean Drilling Program).

  • Haug, G. H., D. M. Sigman, R. Tiedemann, T. F. Pedersen and M. Sarnthein (1999): Onset of permanent stratification in the subarctic Pacific Ocean. Nature, 401, 779–782.

    Article  Google Scholar 

  • Hedges, J. I., J. A. Baldock, Y. Géllnas, C. Lee, M. Peterson and S. G. Wakeham (2001): Evidence for non-selective preservation of organic matter in sinking particles. Nature, 409, 801–804.

    Article  Google Scholar 

  • Hutchins, D. A. and K. W. Bruland (1998): Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime. Nature, 393, 561–564.

    Article  Google Scholar 

  • Imai, K., Y. Nojiri, N. Tsurushima and T. Saino (2002): Time series of seasonal variation of primary productivity at station KNOT (44N, 155E) in the sub-arctic western N-Pacific. Deep-Sea Res. II, 49(24-25), 5395–5408.

    Article  Google Scholar 

  • Imbrie, J., J. D. Hays, D. G. Martinson, A. McIntyre, A. C. Mix, J. J. Morley, N. G. Pisas, W. L. Prell and N. J. Shackleton (1984): The orbital theory of pleistocene climate: support from a revised chronology of the marine ?18O record. p. 269–305. In Milankovitch and Climate, ed. by A. L. Berger et al., D. Riedel Publishing Company.

  • Kawahata, H. and H. Ohshima (2002): Small latitudinal shift in the Kuroshio Extension (Central Pacific) during glacial times: evidence from pollen transport. Quaternary Sci. Rev., 21, 1705–1717.

    Article  Google Scholar 

  • Kawahata, H., A. Suzuki and N. Ahagon (1998): Sinking particles between the equatorial and the subarctic regions (0-46?N) in the central Pacific. Geochemical J., 32, 125–133.

    Google Scholar 

  • Kawahata, H., T. Okamoto, E. Matsumoto and H. Ujiie (2000): Fluctuations of eolian flux and ocean productivity in the mid-latitude North Pacific during the last 200 kyr. Quaternary Sci. Rev., 19, 1279–1291.

    Article  Google Scholar 

  • Keigwin, L. D. (1998): Glacial-age hydrography of the far northwest Pacific Ocean. Paleoceanography, 13(4), 323–339.

    Article  Google Scholar 

  • Keigwin, L. D., G. A. Jones and P. N. Froelich (1992): A 15,000 year paleoenvironmental record from the Meiji Seamount, far northwestern Pacific. Earth Planet. Sci. Lett., 111, 425–440.

    Article  Google Scholar 

  • Kiefer, T., M. Sarnthein and A. P. Roberts (2001): North Pacific response to millennial-scale changes in ocean circulation over the last 60 kyr. Paleoceanography, 16(2), 179.

    Article  Google Scholar 

  • Kohfeld, K. E. and S. P. Harrison (2001): DIRTMAP: The geological record of dust. Earth Sci. Rev., 54, 81–114.

    Article  Google Scholar 

  • Krauskopf, K. (1979): Introduction to Geochemistry, Mcgraw-Hill, New York, 617 pp.

    Google Scholar 

  • Laskar, J. (1990): The chaotic motion of the solar system: A numerical estimation of the size of the chaotic zones. Icarus, 88, 266–291.

    Article  Google Scholar 

  • Laws, E. A., P. G. Falkowski and J. J. McCarthy (2000): Temperature effects on export production in the open ocean. Global Biogeochem. Cycles, 14(4), 1231.

    Article  Google Scholar 

  • Levitus, S., T. Boyer, R. Burgett and M. Conkright (1994): World Ocean Atlas, Natl. Oceanogr. Data Cent., Natl. Oceanic and Atmos. Admin. Silver Spring, Md. Maeda, L., H. Kawahata and M. Noharta (2002): Fluctuation of biogenic and abiogenic sedimentation on the Shatsky Rise in the western north Pacific during the late Quaternary. Mar. Geol., 189, 197–214.

    Google Scholar 

  • Mahowald, N., K. Kohfeld, M. Hansson, Y. Balkanski, S. P. Harrison, I. C. Prentice, M. Schulz and H. Rodhe (1999): Dust sources and deposition during the last glacial maximum and current climate: a comparison of model results with paleodata from ice cores and marine sediments. J. Geophys. Res., 104(D13), 15895–15916.

    Article  Google Scholar 

  • Marcantonio, F., R. F. Anderson, S. Higgins, M. Stute, P. Schlosser and P. Kubik (2001): Sediment focusing in the central equatorial Pacific Ocean. Paleoceanography, 16(3), 260–267 (paper 2000PA000540).

    Article  Google Scholar 

  • Martin, J. (1990): Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography, 5, 1–13.

    Google Scholar 

  • Martin, J. H. and S. E. Fitzwater (1988): Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature, 331, 341–343.

    Article  Google Scholar 

  • Martinson, D. G., N. G. Pisas, J. D. Hays, J. Imbrie, T. C. Moore and N. J. Shackleton (1987): Age dating and the orbital theory of the ice ages: Developement of a high-resolution 0 to 300,000-year chronostratigraphy. Quaternary Res., 27, 1–29.

    Article  Google Scholar 

  • McDonald, D., T. F. Pedersen and J. Crusius (1999): Multiple late Quaternary episodes of exceptional diatom production in the Gulf of Alaska. Deep-Sea Res. II, 46, 2993–3017.

    Article  Google Scholar 

  • McManus, J., W. M. Berelson, G. P. Klinkhammer, K. S. Johnson, K. H. Coale, R. F. Anderson, N. Kumar, D. J. Burdige, D. E. Hammond, H. J. Brumsack, D. C. McCorkle and A. Rushdi (1998): Geochemistry of barium in marine sediments: Implications for its use as a paleoproxy. Geochim. Cosmochim. Acta, 62(21/22), 3453–3473.

    Article  Google Scholar 

  • McRoy, C. P. and J. J. Goering (1974): The influence of ice on the primary productivity of the Bering Sea. p. 403–421. In Oceanography of the Bering Sea, ed. by D. W. Hood and E. J. Kelly, University of Alaska, Fairbanks.

    Google Scholar 

  • Middelburg, J. J., K. Soetaert and P. M. J. Herman (1997): Empirical relationships for use in global diagenetic models. Deep-Sea Res., 44(2), 327–344.

    Article  Google Scholar 

  • Miller, C. B., B. W. Frost, P. A. Wheeler, M. R. Landry, N. Welschmeyer and T. M. Powell (1991): Ecological dynamics in the subarctic Pacific, a possible iron-limited system. Limnol. Oceanogr., 36, 1600–1615.

    Article  Google Scholar 

  • Muggli, D. L., M. Lecourt and P. J. Harrison (1996): Effects of iron and nitrogen source on the sinking rate, physiology and metal composition of an oceanic diatom from the subarctic Pacific. Mar. Ecol. Prog. Ser., 132, 215–227.

    Google Scholar 

  • Müller, P. J. and E. Suess (1979): Productivity, sedimentation rate, and sedimentary organic matter in the oceans-I. Organic carbon preservation. Deep-Sea Res., 26A, 1347–1362.

    Article  Google Scholar 

  • Nakatsuka, T., K. Watanabe, N. Handa, E. Matsumoto and E. Wada (1995): Glacial to interglacial surface nutrient variations of Bering deep basins recorded by ?13C and ?15N of sedimentary organic matter. Paleoceanography, 10(6), 1047–1061.

    Article  Google Scholar 

  • Narita, H., M. Sato, S. Tsunogai, M. Maruyama, M. Ikehara, T. Nkatsuka, M. Wakatsuchi, N. Harada and U. Ujiie (2002): Biogenic opal indicating less productive northwestern North Pacific during glacial stages. Geophys. Res. Lett., 29(15), 22–1 to 22-4.

    Article  Google Scholar 

  • Nelson, D. M., P. Treguer, M. A. Brzezinski, A. Leynaert and B. Queguiner (1995): Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochem. Cycles, 9(3), 359–372.

    Article  Google Scholar 

  • Pedersen, T. F., R. François, L. François, K. Alverson and J. McManus (2002): The late quaternary history of biogeochemical cycling of carbon. p. 63–79. In Paleoclimate, Global Change, and the Future, ed. by K. D. Alverson, R. S. Bradley and T. F. Pedersen, Springer.

  • Petit, J. R., J. Jouzel, D. Raynaud, N. I. Barkov, J.-M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pépin, C. Ritz, E. Saltzman and M. Stievenard (1999): Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429–436.

    Article  Google Scholar 

  • Pondaven, P., O. Ragueneau, P. Tréguer, A. Hauvespre, L. Dezileau and J. L. Reyss (2000): Resolving the "opal paradox" in the Southern Ocean. Nature, 405, 168–172.

    Article  Google Scholar 

  • Ragueneau, O., P. Tréguer, A. Leynaert, R. F. Anderson, M. A. Brzezinski, D. J. DeMaster, R. C. Dugdale, J. Dymond, G. Fischer, R. François, C. Heinze, E. Maier-Reimer, V. Martin-Jézéquel, D. M. Nelson and B. Quéguiner (2000): A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Earth Planet. Sci. Lett., 26, 317–365.

    Google Scholar 

  • Roemmich, D. and T. McCallister (1989): Large scale circulation of the North Pacific Ocean. Prog. Oceanogr., 22, 171–204.

    Article  Google Scholar 

  • Rohling, E. J., P. A. Mayewski and P. Challenor (2003): On the timing and mechanism of millennial-scale variability during the last glacial cycle. Climate Dyn., 20, 257–267.

    Google Scholar 

  • Sancetta, C. (1983): Effect of Pleistocene glaciation upon oceanographic characteristics of the North Pacific Ocean and Bering Sea. Deep-Sea Res., 30, 851–869.

    Article  Google Scholar 

  • Sancetta, C., L. Heusser, L. Labeyrie, A. S. Naidu and S. W. Robinson (1985): Wisconsin-Holocene palaeoenvironment of the Bering Sea: Evidence from diatoms, pollen, oxygen isotopes and clay minerals. Mar. Geol., 62, 55–68.

    Article  Google Scholar 

  • Sarmiento, J. L. and R. Toggweiler (1984): A new model for the role of the oceans in determining atmospheric pCO2. Nature, 308, 621–624.

    Article  Google Scholar 

  • Sarnthein, M. and K. Winn (1988): Global variations of surface ocean productivity in low and mid latitudes: influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21000 years. Paleoceanography, 3(3), 361–399.

    Google Scholar 

  • Sarnthein, M., K. Winn and R. Zahn (1987): Paleoproductivity of oceanic upwelling and the effect on atmospheric CO2 and climatic change during deglaciation times. p. 311–337. In Abrupt Climatic Change, ed. by W. H. Berger and L. D. Labeyrie, D. Reidel.

  • Sato, M. M., H. Narita and S. Tsungai (2002): Barium increasing prior to opal during the last termination of glacial ages in the Okhotsk Sea sediments. J. Oceanogr., 58, 461–467.

    Article  Google Scholar 

  • Shackleton, N. J. (2000): The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science, 289, 1897–1902.

    Article  Google Scholar 

  • Shiga, K. and I. Koizumi (2000): Latest Quaternary oceanographic changes in the Okhotsk Sea based on diatom records. Marine Micropaleontology, 38, 91–117.

    Article  Google Scholar 

  • Sigman, D. M. and E. A. Boyle (2000): Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 407, 859–869.

    Article  Google Scholar 

  • Smith, W. O. and D. M. Nelson (1985): Phytoplankton bloom produced by a receding ice edge in the Ross Sea: spatial coherence with the density field. Science, 227, 163–166.

    Google Scholar 

  • Sorokin, Y. I. (1999): Data on primary production in the Bering Sea and adjacent Northern Pacific. J. Plankton Res., 21(4), 615–636.

    Article  Google Scholar 

  • Sorokin, Y. I. and P. Y. Sorokin (1999): Production in the Sea of Okhotsk. J. Plankton Res., 21(2), 201–230.

    Article  Google Scholar 

  • Stott, L. D., W. Berelson, R. Douglas and D. Gorsline (2000): Increased dissolved oxygen in Pacific intermediate waters due to lower rates of carbon oxidation in sediments. Nature, 407, 367–370.

    Article  Google Scholar 

  • Stuiver, M., P. J. Reimer, E. Bard, J. W. Beck, G. S. Burr, K. A. Hughen, B. Kromer, G. McCormac, J. van der Pflicht and M. Spurk (1998): INTCAL98 radiocarbon age calibration, 24,000-0 cal BP. Radiocarbon, 40(3), 1041–1083.

    Google Scholar 

  • Svensson, A., P. E. Biscaye and F. E. Grousset (2000): Characterization of late glacial continental dust in the Greenland Ice Core Project ice core. J. Geophys. Res., 105(D4), 4637–4656.

    Article  Google Scholar 

  • Tabata, S. (1975): The general circulation of the Pacific Ocean and a brief account of the oceanographic structure of the North Pacific Ocean. Part I-Circulation and volume transports. Atmosphere, 13, 133–168.

    Google Scholar 

  • Takeda, S. (1998): Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature, 393, 774–777.

    Article  Google Scholar 

  • Talley, L. D. (1985): Ventilation of the Subtropical North Pacific: The shallow salinity minimum. J. Phys. Oceanogr., 15, 633–649.

    Article  Google Scholar 

  • Talley, L. D. (1995): Some advances in understanding of the general circulation of the Pacific Ocean, with emphasis on recent U.S. contributions. Rev. Geophys., 33, Suppl., 1335–1352.

    Article  Google Scholar 

  • Talley, L. D. (2003): Data-based meridional overturning streamfunctions for the global ocean. J. Climate, 16, 3213–3226.

    Article  Google Scholar 

  • Tegen, I. and I. Fung (1995): Contribution to the atmospheric mineral aerosol load from land surface modification. J. Geophys. Res, 100(D9), 18,707–18,726.

    Article  Google Scholar 

  • Ternois, Y., K. Kawamura, L. Keigwin, N. Ohkouchi and T. Nakatsuka (2001): A biomarker approach for assessing marine and terrigenous inputs to the sediments of the Sea of Okhotsk for the last 27,000 kyrs. Geochim. Cosmochim. Acta, 65(5), 79.

    Article  Google Scholar 

  • Thomson, R. E. (1981): Oceanography of the British Columbia Coast. Department of Fisheries and Oceans, Ottawa, 291 pp.

    Google Scholar 

  • Thunell, R. C., R. Varela, M. Llano, J. Collister, F. Muller-Karger and R. Bohrer (2000): Organic carbon fluxes, degradation and accumulation in an anoxic basin: Sediment trap results from the Cariaco Basin. Limnol. Oceanogr., 45(2), 300–308.

    Article  Google Scholar 

  • Tiedemann, R. and G. H. Haug (1995): Astronomical calibraExport Production in the Subarctic North Pacific over the Last 800 kyrs: No Evidence for Iron Fertilization? 203 tion of cycle stratigraphy for Site 882 in the northwest Pacific. p. 283–291. In Proceedings of the Ocean Drilling Program, Sci. Results, Vol. 145, ed. by D. K. Rea, I. A. Basov, D. W. Stoll and J. F. Allen, College Station TX (Ocean Drilling Program).

  • Tsuda, A., S. Taskeda, H. Saito, J. Nishioka, Y. Nojiri, I. Kudo, H. Kiyosawa, A. Shiomoto, K. Imai, T. Ono, A. Shimamoto, D. Tsumune, T. Yoshimura, T. Aono, A. Hinuma, M. Kinugasa, K. Suzuki, Y. Sohrin, Y. Nori, H. Tani, Y. Deguchi, N. Tsurushima, H. Ogawa, K. Fukami, K. Kuma and T. Saino (2003): A mesoscale iron enrichment in the western subarctic Pacific induces a large centric diatom bloom. Science, 300, 958–961.

    Article  Google Scholar 

  • Tsurushima, N., Y. Nojiri, K. Imai and S. Watanabe (2002): Seasonal variations of the carbon dioxide system and nutrients in the surface mixed layer at station KNOT (44N, 155W) in the subarctic Pacific. Deep-Sea Res. II, 49(24-25), 5377–5392.

    Article  Google Scholar 

  • Varela, D. E. and P. J. Harrison (1999): Seasonal variability in nitrogenous nutrition of phytoplankton assemblages in the northeastern subarctic Pacific Ocean. Deep-Sea Res. II, 46, 2505–2538.

    Article  Google Scholar 

  • Volkman, J. K. (1986): A review of sterol markers for marine and terrigenous organic matter. Org. Geochem., 9(2), 83–99.

    Article  Google Scholar 

  • Von Breymann, M. T., K.-C. Emeis and E. Suess (1992): Water depth and diagenetic constraints on the use of barium as a paleoproductivity indicator. p. 273–284. In Upwelling Systems: Evolution since the Early Miocene, ed. by C. P. Summerhayes, W. L. Prell and K. C. Emeis, Geological Society Special Publication.

  • Warren, B. A. (1983): Why is no deep water formed in the North Pacific? J. Mar. Res., 41, 327–347.

    Article  Google Scholar 

  • Werner, M., I. Tegen, S. P. Harrison, K. E. Kohfeld, I. C. Prentice, Y. Balkanski, H. Rodhe and C. Roelandt (2002): Seasonal and interannual variability of the mineral dust cycle under present and glacial climate conditions, J. Geophys. Res., 107(D24), 4744, doi:10.1029/ 2002JD002365.

    Article  Google Scholar 

  • Whitney, F. A. and H. J. Freeland (1999): Variability in upperocean water properties in the NE Pacific Ocean. Deep-Sea Res. II, 46(11-12), 2351–2370.

    Article  Google Scholar 

  • Whitney, F. and M. Robert (2002): Structure of Haida eddies and their transport of nutrients from coastal margins into the NE Pacific Ocean. J. Oceanogr., 58(5), 715–723.

    Article  Google Scholar 

  • Whitney, F. A., C. S. Wong and P. W. Boyd (1998): Interannual variability in nitrate supply to surface waters of the Northeast Pacific Ocean. Mar. Ecol. Prog. Ser., 170, 15–23.

    Google Scholar 

  • Wong, C. S., N. A. D. Waser, F. A. Whitney, W. K. Johnson and J. S. Page (2002): Time-series study of the biogeochemistry of the North East Subarctic Pacific: Reconciliation of the Corg/N remineralization and uptake ratios with the Redfield ratios. Deep-Sea Res. II, 49(24-25), 5717–5738.

    Article  Google Scholar 

  • Yasuda, I., Y. Hiroe, K. Komatsu, K. Kawasaki, T. M. Joyce, F. Bahr and Y. Kawasakiet (2001): Hydrographic structure and transport of the Oyashio south of Hokkaido and the formation of North Pacific Intermediate Water. J. Geophys. Res., 106(C4), 6931–6942.

    Article  Google Scholar 

  • Zahn, R., T. F. Pedersen, B. D. Bornhold and A. C. Mix (1991): Water mass conversion in the glacial subarctic Pacific (54N, 148W): Physical constraints and the benthic-planktonic stable isotope record. Paleoceanography, 6, 543–560.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kienast, S.S., Hendy, I.L., Crusius, J. et al. Export Production in the Subarctic North Pacific over the Last 800 kyrs: No Evidence for Iron Fertilization?. Journal of Oceanography 60, 189–203 (2004). https://doi.org/10.1023/B:JOCE.0000038326.73943.aa

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOCE.0000038326.73943.aa

Navigation