Advertisement

Journal of Oceanography

, Volume 60, Issue 1, pp 45–52 | Cite as

Oxygen Utilization and Organic Carbon Remineralization in the Upper Water Column of the Pacific Ocean

  • Richard A. Feely
  • Christopher L. Sabine
  • Reiner Schlitzer
  • John L. Bullister
  • Sabine Mecking
  • Dana Greeley
Article

Abstract

As a part of the JGOFS synthesis and modeling project, researchers have been working to synthesize the WOCE/JGOFS/DOE/NOAA global CO2 survey data to better understand carbon cycling processes in the oceans. Working with international investigators we have compiled a Pacific Ocean data set with over 35,000 unique samples analyzed for at least two carbon species, oxygen, nutrients, chlorofluorocarbon (CFC) tracers, and hydrographic parameters. We use these data here to estimate in-situ oxygen utilization rates (OUR) and organic carbon remineralization rates within the upper water column of the Pacific Ocean. OURs are derived from the observed apparent oxygen utilization (AOU) and the water age estimates based on CFCs in the upper water and natural radiocarbon in deep waters. The rates are generally highest just below the euphotic zone and decrease with depth to values that are much lower and nearly constant in water deeper than 1200 m. OURs ranged from about 0.02–10 μmol kg−1yr−1 in the upper water masses from about 100–1000 m, and averaged = 0.10 μmol kg−1yr−1 in deep waters below 1200 m. The OUR data can be used to directly estimate organic carbon remineralization rates using the C:O Redfield ratio given in Anderson and Sarmiento (1994). When these rates are integrated we obtain an estimate of 5.3 ± 1 Pg C yr−1 for the remineralization of organic carbon in the upper water column of the Pacific Ocean.

Oxygen utilization organic carbon remineralization chlorofluorocarbons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, L. A. and J. L. Sarmiento (1994): Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochem. Cycles, 8, 65–80. CrossRefGoogle Scholar
  2. Archer, D., D. Lea and N. Mahowald (2000): What caused the glacial/interglacial atmospheric pCO2 cycles? Rev.Geophys., 38(2), 159–189.CrossRefGoogle Scholar
  3. Armstrong, R. A., C. Lee, J. I. Hedges, S. Honjo and S. G. Wakeham (2002): A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep-Sea Res. II, 49(1-3), 219–236.CrossRefGoogle Scholar
  4. Aumont, O. (1998): Étude du cycle naturel du carbone dans un modèle 3D de l'océan mondial. Doctorat Thesis, Université Paris VI.Google Scholar
  5. Bacastow, R. B. and E. Maier-Reimer (1990): Ocean-circulation model of the carbon cycle. Clim. Dyn., 4, 95–125.CrossRefGoogle Scholar
  6. Balch, W. M. and K. Kilpatrick (1996): Calcification rates in the equatorial Pacific along 140?W. Deep-Sea Res. II, 43(4-6), 971–993.CrossRefGoogle Scholar
  7. Berelson, W. (2001): Ocean Interior: A comparison of four U.S.JGOFS regional studies. Oceanography, 14(4), 59–67.Google Scholar
  8. Berelson, W. M., R. F. Anderson, J. Dymond, D. DeMaster, D. E. Hammond, R. Collier, S. Honjo, M. Leinen, J. McManus, R. Pope, C. Smith and T. Nagata (1997): Biogenic budget of particle rain, benthic remineralization and sediment accumulation in the equatorial Pacific. Deep-Sea Res. II, 44(9-10), 2251–2282.CrossRefGoogle Scholar
  9. Broecker, W. S. and T.-H. Peng (1982): Tracers in the Sea. Lamont-Doherty Geological Observatory, Palisades, NY, 690 pp.Google Scholar
  10. Bullister, J. L. and R. F. Weiss (1988): Determination of CCl3 F and CCl2 F2 in seawater and air. Deep-Sea Res., 35, 839–853.CrossRefGoogle Scholar
  11. Carpenter, J. H. (1965): The Chesapeake Bay Institute technique for the Winkler dissolved oxygen method. Limnol. Oceanogr., 10, 141–143. Google Scholar
  12. Chen, C.-T. A. (1990): Rates of Calcium carbonate dissolution and organic carbon decomposition in the North Pacific Ocean. J. Oceanogr. Soc. Japan, 46(5), 202–210.CrossRefGoogle Scholar
  13. Doney, S. C. and J. L. Bullister (1992): A chlorofluorocarbon section in the eastern North Atlantic. Deep-Sea Res., 39(11/ 12), 1857–1883.CrossRefGoogle Scholar
  14. Doney, S. C., W. J. Jenkins and J. L. Bullister (1997): A comparison of tracer dating techniques on a meridional section in the eastern North Atlantic. Deep-Sea Res. I, 44, 603–626.CrossRefGoogle Scholar
  15. Emerson, S., S. Mecking and J. Abell (2001): The biological pump in the subtropical north Pacific Ocean; nutrient sources, Redfield ratios, and recent changes. Global Biogeochem. Cycles, 15, 535–554.CrossRefGoogle Scholar
  16. Emery, W. J. and J. Meincke (1986): Global water masses, summary and review. Oceanologica Acta, 9, 383–391.Google Scholar
  17. Falkowski, P. G., R. T. Barber and V. Smetacek (1998): Biogeochemical controls and feedbacks on ocean primary production. Science, 281, 200–206.CrossRefGoogle Scholar
  18. Falkowski, P. G., R. J. Scholas, E. Boyle, J. Canadell, J. Elser, N. Gruber, K. Hibbard, P. Hogberg, S. Linder, F. T. Mackenzie, B. Moore, III, T. Pedersen, Y. Rosenthal, S. Seltzinger, V. Smetacek and W. Steffen (2000): The global carbon cycle: a test of our knowledge of earth as a system. Science, 290, 291–296.Google Scholar
  19. Feely, R. A., C. L. Sabine, K. Lee, F. J. Millero, M. F. Lamb, D. Greeley, J. L. Bullister, R. M. Key, T.-H. Peng, A. Kozyr, T. Ono and C. S. Wong (2002): In situ calcium carbonate dissolution in the Pacific Ocean. Global Biogeochem. Cycles, 16(4), 1144, doi:10.1029/2002GB001866.CrossRefGoogle Scholar
  20. Friederich, G. E., L. A. Codispodi and C. M. Sakamoto (1991): An easy-to-construct automated Winkler titration system. MBARI Tech. Paper, 44.Google Scholar
  21. Garcia, H. E. and L. I. Gordon (1992): Oxygen solubility in seawater: Better fitting equations. Limnol. Oceanogr., 37(6), 1307–1312.CrossRefGoogle Scholar
  22. Lamb, M. F., J. L. Bullister, R. A. Feely, G. C. Johnson, D. P. Wisegarver, B. Taft, R. Wanninkhof, K. E. McTaggart, K. A. Krogslund, C. Mordy, K. Hargreaves, D. Greeley, T. Lantry, H. Chen, B. Huss, F. J. Millero, R. H. Byrne, D. A. Hansell, F. P. Chavez, P. D. Quay, P. R. Guenther, J.-Z. Zhang, W. Gardner, M. J. Richardson and T.-H. Peng (1997): Chemical and hydrographic measurements in the eastern Pacific during the CGC94 expedition (WOCE section P18).NOAA Data Report ERL PMEL-61a (PB97-158075), 235 pp.Google Scholar
  23. Lamb, M. F., C. L. Sabine, R. A. Feely, R. Wanninkhof, R. M. Key, G. C. Johnson, F. J. Millero, K. Lee, T.-H. Peng, A. Kozyr, J. L. Bullister, D. Greeley, R. H. Byrne, D. W. Chipman, A. G. Dickson, C. Goyet, P. R. Guenther, M. Ishii, K. M. Johnson, C. D. Keeling, T. Ono, K. Shitashima, B. Tilbrook, T. Takahashi, D. W. R. Wallace, Y. Watanabe, C. Winn and C. S. Wong (2002): Consistency and synthesis of Pacific Ocean CO2 survey data. Deep-Sea Res. II, 49(1-3), 21–58.CrossRefGoogle Scholar
  24. Lee, K. (2001): Global net community production estimated from the annual cycle of surface water total dissolved inorganic carbon. Limnol. Oceanogr., 46(6), 1287–1297.CrossRefGoogle Scholar
  25. Li, Y. H. and T.-H. Peng (2002): Latitudinal change of remineralization ratios in the oceans and its implications for nutrient cycles. Global Biogeochem. Cycles, 16(4), 1130, doi:10.1029/2001GB001828.CrossRefGoogle Scholar
  26. Li, Y. H., T. Takahashi and W. S. Broecker (1969): Degree of saturation of CaCO3 in the oceans. J. Geophys. Res., 74(23), 5507–5525.CrossRefGoogle Scholar
  27. Li, Y. H., D. M. Karl, C. D. Winn, F. T. Mackenzie and K. Gans (2000): Remineralization ratios in the subtropical North Pacific gyre. Aquat. Geochem., 6, 65–86.CrossRefGoogle Scholar
  28. Lutz, M., R Dunbar and K. Caldeia (2002): Regional variability in the vertical flux of particulate organic carbon to the ocean interior. Global Biogeochem. Cycles, 16(3), 11–26.CrossRefGoogle Scholar
  29. Maier-Reimer, E. (1993): Geochemical cycles in the ocean circulation model, Preindustrial tracer distributions. Global Biogeochem. Cycles, 7(3), 645–667.CrossRefGoogle Scholar
  30. Martin, J. H., G. A. Knauer, D. M. Karl and W. W. Broenkow (1987): VERTEX: Carbon cycling in the northeast Pacific. Deep-Sea Res., 34, 267–285.CrossRefGoogle Scholar
  31. Matsumoto, K., J. L. Sarmiento and M. A. Brzezinski (2002): Silicic acid "leakage" from the Southern Ocean as a possible mechanism for explaining glacial atmospheric pCO2.Global Biogeochem. Cycles (in press).Google Scholar
  32. Mecking, S. (2001): Spatial and temporal patterns of chlorofluorocarbons in the North Pacific thermocline: A data and modeling study. Ph.D. Dissertation, University of Washington, Seattle, WA, 272 pp.Google Scholar
  33. Mecking, S., M. J. Warner, C. E. Greene, S. L. Hautala and R. E. Sonnerup (2003): The influence of mixing on CFC uptake and CFC ages in the North Pacific thermocline. J.Geophys. Res. (submitted).Google Scholar
  34. Najjar, R. G. and J. C. Orr (1998): Design of OCMIP-2 simulations of chlorofluorocarbons, the solubility pump and common biogeochemistry, p. 19.Google Scholar
  35. Peng, T.-H. and W. S. Broecker (1987): C/P ratios in marine detritus. Global Biogeochem. Cycles, 1, 155–161.Google Scholar
  36. Prinn, R. G., R. F. Weiss, P. J. Fraser, P. G. Simmonds, D. M. Cunnold, F. N. Alyea, S. O'Doherty, P. Salameh, B. R. Miller, J. Huang, R. H. J. Wang, D. E. Hartley, C. Harth, L. P. Steele, G. Sturrock, P. M. Midgley and A. McCulloch (2000): A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE. J. Geophys. Res., 105, 17,751–17,792. CrossRefGoogle Scholar
  37. Rubin, S. I. and R. M. Key (2002): Separating natural and bomb produced radiocarbon in the ocean: The potential alkalinity method. Global Biogeochem. Cycles, 16(4), 1105,doi:10.1029/200GB001432.CrossRefGoogle Scholar
  38. Sarmiento, J., J. Dunne, A. Gnanadesikan, R. M. Key, K. Matsumoto and R. Slater (2002): A new estimate of the CaCO3 to organic carbon export ratio. Global Biogeochem. Cycles, 16(4), 1107, doi:10.1029/202GB001919. CrossRefGoogle Scholar
  39. Schlitzer, R. (2000): Applying the adjoint method for global biogeochemical modeling. p. 107–124. In Inverse Methods in Global Biogeochemical Cycles, ed. by P. Kasibhatla, M. Heimann, D. Hartley, N. Mahowald, R. Prinn and P. Rayner, Geophysical Monograph Series, Vol. 114, American Geophysical Union, Washington, D.C.Google Scholar
  40. Schlitzer, R. (2002): Carbon export fluxes in the Southern Ocean: Results from inverse modeling and comparison satellite-based estimates. Deep-Sea Res. II, 49(9-10), 1623–1644.CrossRefGoogle Scholar
  41. Sonnerup, R. E. (2001): On the relations among CFC derived water mass age. Geophys. Res. Lett., 28(9), 1739–1742.CrossRefGoogle Scholar
  42. Sonnerup, R. E., P. D. Quay and J. L. Bullister (1999): Thermocline ventilation and oxygen utilization rates in the subtropical north Pacific based on CFC distributions during WOCE. Deep-Sea Res., 46(5), 777–805.CrossRefGoogle Scholar
  43. Takahashi, K., N. Fujitani, M. Yanada and Y. Maita (2000): Long-term biogenic particle fluxes in the Bering Sea and tbe central subarctic Pacific Ocean, 1990-1995. Deep-Sea Res. I, 47(9), 1723–1759.CrossRefGoogle Scholar
  44. Tsunogai, S. (1972): An estimate of the rate of decomposition of organic matter in the deep water of the Pacific Ocean. p. 517–533. In Biological Oceanography of the Northern Pacific Ocean, ed. by Y. Takenouti, Idemitsu Shoten.Google Scholar
  45. Warner, M. J., J. L. Bullister, D. P. Wisegarver, R. H. Gammon and R. F. Weiss (1996): Basin-wide distributions of chlorofluorocarbons CFC-11 and CFC-12 in the North Pacific: 1985-1989. J. Geophys. Res., 101(C9), 20,525–20,542.CrossRefGoogle Scholar
  46. Yamanaka, Y. and E. Tajika (1996): The role of the vertical fluxes of particulate organic matter and calcite in the ocean carbon cycle: studies using an ocean biogeochemical general circulation model. Global Biogeochem. Cycles, 10, 361–382.CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan 2004

Authors and Affiliations

  • Richard A. Feely
    • 1
  • Christopher L. Sabine
    • 1
  • Reiner Schlitzer
    • 2
  • John L. Bullister
    • 1
  • Sabine Mecking
    • 3
  • Dana Greeley
    • 1
  1. 1.NOAA/Pacific Marine Environmental LaboratorySeattleU.S.A.
  2. 2.Alfred Wegener Institute for Polar and Marine ResearchColumbusstrasse, BremerhavenGermany
  3. 3.Woods Hole Oceanographic InstitutionWoods HoleU.S.A

Personalised recommendations