Skip to main content
Log in

Roles of Continental Shelves and Marginal Seas in the Biogeochemical Cycles of the North Pacific Ocean

  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Most marginal seas in the North Pacific are fed by nutrients supported mainly by upwelling and many are undersaturated with respect to atmospheric CO2 in the surface water mainly as a result of the biological pump and winter cooling. These seas absorb CO2 at an average rate of 1.1 ± 0.3 mol C m−2yr−1 but release N2/N2O at an average rate of 0.07 ± 0.03 mol N m−2yr−1. Most of primary production, however, is regenerated on the shelves, and only less than 15% is transported to the open oceans as dissolved and particulate organic carbon (POC) with a small amount of POC deposited in the sediments. It is estimated that seawater in the marginal seas in the North Pacific alone may have taken up 1.6 ± 0.3 Gt (1015 g) of excess carbon, including 0.21 ± 0.05 Gt for the Bering Sea, 0.18 ± 0.08 Gt for the Okhotsk Sea; 0.31 ± 0.05 Gt for the Japan/East Sea; 0.07 ± 0.02 Gt for the East China and Yellow Seas; 0.80 ± 0.15 Gt for the South China Sea; and 0.015 ± 0.005 Gt for the Gulf of California. More importantly, high latitude marginal seas such as the Bering and Okhotsk Seas may act as conveyer belts in exporting 0.1 ± 0.08 Gt C anthropogenic, excess CO2 into the North Pacific Intermediate Water per year. The upward migration of calcite and aragonite saturation horizons due to the penetration of excess CO2 may also make the shelf deposits on the Bering and Okhotsk Seas more susceptible to dissolution, which would then neutralize excess CO2 in the near future. Further, because most nutrients come from upwelling, increased water consumption on land and damming of major rivers may reduce freshwater output and the buoyancy effect on the shelves. As a result, upwelling, nutrient input and biological productivity may all be reduced in the future. As a final note, the Japan/East Sea has started to show responses to global warming. Warmer surface layer has reduced upwelling of nutrient-rich subsurface water, resulting in a decline of spring phytoplankton biomass. Less bottom water formation because of less winter cooling may lead to the disappearance of the bottom water as early as 2040. Or else, an anoxic condition may form as early as 2200 AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez-Borrego, S. (1983): Gulf of California. p. 427–448. In Estuaries and Enclosed Seas, ed. by B. H. Ketchum, Elsevier, Amsterdam.

    Google Scholar 

  • Alvarez-Borrego, S. and J. R. Lara-Lara (1991): The physical environment and primary productivity of the Gulf of California.In The Gulf and Pennisular Provinces of the Californias, AAPG Memoir 47, 555–567.

    Google Scholar 

  • Anderson, R. F., G. T. Rowe, P. F. Kemp, S. Trumbore and P. E. Biscaye (1994): Carbon budget for the mid-slope depocenter of the Middle Atlantic Bight. Deep-Sea Res., 41, 669–703.

    Google Scholar 

  • Andreev, A. G. and M. Kusakabe (2001): Interdecadal variability in dissolved oxygen in the intermediate water layer of the Western Subarctic Gyre and Kuril Basin (Okhotsk Sea).Geophys. Res. Lett., 28, 2453–2456.

    Google Scholar 

  • Andreev, A. G. and S. Watanabe (2002): Temporal changes in dissolved oxygen of the intermediate water in the subarctic North Pacific. Geophys. Res. Lett., 29, 25.1–25.4.

    Google Scholar 

  • Andreev, A. G., A. S. Bychkov and I. A. Zhabin (1999): Excess CO2 penetration in the Okhotsk Sea. Extended abstract, 2nd International Symposium on CO2 in the Oceans, Tsukuba, Jan. 18-22, 1999, p. 21–05.

  • Andreev, A. G., M. Kusakabe, M. Honda, Y. Kumamoto and A. Murata (2002): The Okhotsk Sea impact on chemical parameters in the Northwestern Pacific. Extended abstracts, Mirai Symposium, Tokyo, p. 73–74.

  • Aota, M. and M. Ishikawa (1991): Fresh water supply to the Sea of Okhotsk and volume transport of Soya Warm Current.Bull. Hokkaido Natl. Fish. Res. Inst., 55, 95–99.

    Google Scholar 

  • Aranami, K., S. Watanabe, S. Tsunogai, A. Ohki, K. Miura and H. Kojima (2002): Chemical assessment of oceanic and terrestrial sulfur in the marine boundary layer over the Northern North Pacific during summer. J. Atm. Chem., 41, 49–66.

    Google Scholar 

  • Bakun, A. (1990): Global climate change and intensification of coastal ocean upwelling. Science, 247, 198–201.

    Google Scholar 

  • Bauer, J. E. and E. R. M. Druffel (1998): Oceanmargins as a significant source of organic matter of the deep ocean. Nature, 392, 482–485. 38 C.-T. A. Chen et al.

    Google Scholar 

  • Bauer, J. E., E. R. M. Druffel, D. M. Wolgast and S. Griffin (2001): Sources and cycling of dissolved and particulate organic radiocarbon in the northwest Atlantic continental margin. Global Biogeochem. Cycles, 15, 615–636.

    Google Scholar 

  • Bethoux, J. P., B. Gentili and D. Tailliez (1998): Warming and freshwater budget change in the Mediterranean since the 1940s, their possible relation to the greenhouse effect.Geophys. Res. Lett., 25, 1023–1026.

    Google Scholar 

  • Bezrukov, P. L. (1960): Donnye otlozeniya Ohotskogo morya.Trudy Instituta Okeanologii,32, 15–95.

    Google Scholar 

  • Biebow, N. and E. Hutten (1999): Cruise report KOMEX I and II: RV Professor Gagarinsky Cruise 22, Akademik M.A.Lavrentyev cruise 28, GEOMAR Rep., 82, 188 pp.

  • Biebow, N., T. Ludmann, B. Karp and R. Kulinich (2000): Cruise report KOMEX V and VI: RV Professor Gagarinsky Cruise 26, Marshal Gelovany cruise 1, GEOMAR Rep., 88, 296 pp.

  • Biondi, F., A. Gershunov and D. R. Cayan (2001): North Pacific Decadal Climate Variability since 1961. J. Climate, 14, 5–10.

    Google Scholar 

  • Biscaye, P. E., C. N. Flagg and P. G. Falkowski (1994): The Shelf Edge Exchange Processes experiment, SEEP-II: An introduction to hypotheses, results and conclusions. Deep-Sea Res., 41, 231–252.

    Google Scholar 

  • Blanke, B., S. Speich, G. Madec and R. Maugé (2002): A global diagnostic of interior ocean ventilation. Geophys. Res.Lett., 29, 10.1029/2001GL013727.

  • Broecker, W. S., W. C. Patzert, J. R. Toggweiler and M. Stuiver (1986): Hydrography, chemistry and radioisotopes in the south-east Asian basins. J. Geophys. Res., 91, 14345–14354.

    Google Scholar 

  • Bruevich, S. V. (1956): Khimii osadkov Ohotskogo morya.Trudy Instituta Okeanologii, 18, 41–132.

    Google Scholar 

  • Chao, S. Y., P. T. Shaw and S. Y. Wu (1996a): Deep water ventilation in the South China Sea. Deep-Sea Res. I, 43, 445–466.

    Google Scholar 

  • Chao, S. Y., P. T. Shaw and S. Y. Wu (1996b): El Niño modulation of the South China Sea circulation. Prog. Oceanogr., 38, 51–93.

    Google Scholar 

  • Chen, C. T. A. (1990): Rates of calcium carbonate dissolution and organic carbon decomposition in the North Pacific Ocean. J. Oceanogr. Soc. Japan, 46, 201–210.

    Google Scholar 

  • Chen, C. T. A. (1993a): Carbonate chemistry of the wintertime Bering Sea marginal ice zone. Cont. Shelf Res., 13, 67–87.

    Google Scholar 

  • Chen, C. T. A. (1993b): The oceanic anthropogenic CO2 sink.Chemosphere, 27, 1041–1064.

    Google Scholar 

  • Chen, C. T. A. (1996): The Kuroshio Intermediate Water is the major source of nutrients on the East China Sea continental shelf. Oceanologica Acta, 1, 523–527.

    Google Scholar 

  • Chen, C. T. A. (2000): The Three Gorges Dam: reducing the upwelling and thus productivity of the East China Sea.Geophys. Res. Lett., 27, 381–383.

    Google Scholar 

  • Chen, C. T. A. (2002a): Shelf vs. dissolution generated alkalinity above the chemical lysocline in the North Pacific. Deep-Sea Res. II, 49, 5365–5375.

    Google Scholar 

  • Chen, C. T. A. (2002b): The impact of dams on fisheries: Case of the Three Gorges Dam, Chapter 16. p. 97–99. In Challenges of a Changing Earth, ed. by W. Steffen, J. Jager, D.J. Carson and C. Bradshaw, Springer, Berlin.

    Google Scholar 

  • Chen, C. T. A. (2003a): New vs. export production on the continental shelf. Deep-Sea Res. II, 50, 1327–1333.

    Google Scholar 

  • Chen, C. T. A. (2003b): Exchanges of carbon in the coastal seas.In The Global Carbn Cycle: Integrating Humans, Climate, and the Natural World, ed. by C. B. Field and M. R. Raupach, Island Press (in press).

  • Chen, C. T. and E. T. Drake (1986): Carbon dioxide increase in the atmosphere and oceans and possible effects on climate.Ann. Rev. Earth Planet. Sci., 14, 201–235.

    Google Scholar 

  • Chen, C. T. A. and M. H. Huang (1995): Carbonate chemistry and the anthropogenic CO2 in the South China Sea. Acta Oceanolog. Sin., 14, 47–57.

    Google Scholar 

  • Chen, C. T. A. and M. H. Huang (1996): A mid-depth front separating the South China Sea water and the west Philippine Sea water. J. Oceanogr., 52, 17–25.

    Google Scholar 

  • Chen, C. T. A. and S. Tsunogai (1998): Carbon and nutrients in the ocean. p. 271–307. In Asia Change in the Context of Global Climate Change, ed. by J. N. Galloway and J. M. Melillo, Cambridge Univ. Press.

  • Chen, C. T. A. and S. L. Wang (1998): The intermediate water in the western Okinawa Trough is influenced by the outflow from the South China Sea. J. Geophys. Res., 103, 12683–12688.

    Google Scholar 

  • Chen, C. T. A. and S. L. Wang (1999): Carbon, alkalinity and nutrient budget on the East China Sea Continental Shelf. J.Geophys. Res., 104, 20675–20686.

    Google Scholar 

  • Chen, C. T. A. and J. K. Wann (1998): Flux of metals in Great Ghost Lake in Taiwan in the past 2600 years. J. Lake Sci., 10, Suppl., 315–329.

    Google Scholar 

  • Chen, C. T. A. and C. J. Wu (1991): The anthropogenic CO2 signals in the Red Sea and northwest Indian Ocean.Oceanogr. and Limnol., 22, 434–442 (in Chinese with English abstract).

    Google Scholar 

  • Chen, C. T., R. M. Pytkowicz and E. J. Olson (1982): Evaluation of the calcium problem in the South Pacific. Geochem.J., 16, 1–10.

    Google Scholar 

  • Chen, C. T. A., P. Holligan, H. S. Hong, K. Iseki, S. Krishnaswami, R. Wollast and J. Yoder (1994): Land-ocean interactions in the coastal zone, JGOFS Report No. 15, SCOR, 20 pp.

  • Chen, C. T. A., S. L. Wang and A. S. Bychkov (1995a): Carbonate chemistry of the Sea of Japan. J. Geophys. Res., 100, 13737–13745.

    Google Scholar 

  • Chen, C. T. A., R. Ruo, S. C. Pai, C. T. Liu and G. T. F. Wong (1995b): Exchange of water masses between the East China Sea and the Kuroshio off northeastern Taiwan. Cont. Shelf Res., 15, 19–39.

    Google Scholar 

  • Chen, C. T. A., G. C. Gong, S. L. Wang and A. S. Bychkov (1996a): Redfield ratios and regeneration rates of particulate matter in the Sea of Japan as a model of closed system.Geophys. Res. Lett., 23, 1785–1788.

    Google Scholar 

  • Chen, C. T. A., C. M. Lin, B. T. Huang and L. F. Chang (1996b): The stoichiometry of carbon, hydrogen, nitrogen, sulfur and oxygen in particular matter of the Western North Pacific marginal seas. Mar. Chem., 54, 179–190.

    Google Scholar 

  • Chen, C. T. A., A. S. Bychkov, S. L. Wang and G. Y. Pavlova (1999): An anoxia Sea of Japan by the year 2200? Mar.Chem., 67, 249–265.

    Google Scholar 

  • Chen, C. T. A., S. L. Wang, B. J. Wang and S. C. Pai (2001): Nutrient budgets for the South China Sea basin. Mar. Chem., Roles of Continental Shelves and Marginal Seas in the Biogeochemical Cycles of the North Pacific Ocean 39 75, 281-300.

  • Chen, C. T. A., K. K. Liu and R. MacDonald (2003a): Continental margin exchanges. p. 53–97. In Ocean Biogeochemistry: A JGOFS Synthesis, ed. by M. J. R. Fasham, Springer.

  • Chen, C. T. A., C. T. Liu, W. S. Chuang, Y. C. Yang, F. K. Shiah, T. Y. Tang and S. W. Chung (2003b): Enhanced buoyancy and hence upwelling of subsurface Kuroshio waters after a typhoon in the southern East China Sea. J. Mar. Sys., 42, 65–79.

    Google Scholar 

  • Chiba, S. and T. Saino (2002): Interdecadal change in the upper water column environment and spring diatom community structure in the Japan Sea: an early summer hypothesis.Mar. Eco. Prog. Series, 231, 23–35.

    Google Scholar 

  • Church, T. M., J. R. Scudlark and K. M. Conko (1998): Transmission of atmospherically deposited trace elements through an undeveloped, forested Maryland watershed. Report submitted to the Chesapeake Bay Research and Monitoring Division of the Maryland Department of Natural Resources, 87 pp.

  • Codispoti, L. A., G. E. Friederich and D. W. Hood (1986): Variability in the inorganic carbon system over the southeastern Bering Sea shelf during spring 1980 and spring-summer 1981. Deep-Sea Res., 5, 133–160.

    Google Scholar 

  • Dai, A. and K. E. Trenberth (2002): Estimates of freshwater discharge from continents: Latitudinal and seasonal variations.J. Hydrometeorol., 3, 660–687.

    Google Scholar 

  • de Haas, H. (1997): Transport, preservation and accumulation of organic carbon in the North Sea. Dissertation, Univ. Utrecht, 149 pp.

    Google Scholar 

  • de Haas, H., W. D. Boer and T. C. E. van Weering (1997): Recent sedimentation and organic carbon burial in a shelf sea: the North Sea. Mar. Geol., 144, 131–146.

    Google Scholar 

  • de Haas, H., T. C. E. van Weering and H. de Stigter (2002): Organic carbon in shelf seas: sinks or sources, processes and products. Cont. Shelf Res., 22, 691–717.

    Google Scholar 

  • Devol, A. H. (1991): Direct measurement of nitrogen gas fluxes from continental shelf sediments. Nature, 349, 319–321.

    Google Scholar 

  • Devol, A. H. and J. P. Christensen (1993): Benthic fluxes and nitrogen cycling in sediments of the continental margin of the eastern North Pacific. J. Mar. Res., 51, 345–372.

    Google Scholar 

  • Eittreim, S. L., J. P. Xu, M. Noble and B. D. Edwards (2002): Towards a sediment budget for the Santa Cruz shelf. Mar.Geol., 181, 235–248.

    Google Scholar 

  • Feely, R. A. and C. T. Chen (1982): The effect of excess CO2 on the calculated calcite and aragonite saturation horizons in the northeast Pacific. Geophys. Res. Lett., 9, 1294–1297.

    Google Scholar 

  • Frankignoulle, M. and A. V. Borges (2001): European continental shelf as a significant sink for atmospheric carbon dioxide. Global Biogeochem. Cycles, 15, 569–576.

    Google Scholar 

  • Freeland, H. J. (1990): Sea surface temperatures along the coast of British Columbia: regional evidence for a warming trend.Can. J. Fish. Aquat. Sci., 47, 346–350.

    Article  Google Scholar 

  • Freeland, H., K. Denman, C. S. Wong, F. Whitney and R. Jacques (1997): Evidence of change in the winter mixed layer in the Northeast Pacific Ocean. Deep-Sea Res., 44, 2117–2129.

    Google Scholar 

  • Friederich, G. E., P. M. Walz, M. G. Burczynski and F. P. Chavez (2002): Inorganic carbon in the central California upwelling system during the 1997-1999 El Niño-La Niña event. Prog.Oceanogr., 54, 185–203.

    Google Scholar 

  • Frische, A. and D. Quadfasel (1990): Hydrography of the Sulu Sea. p. 101-104. In Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 124, ed. by C. Rangin, E. Silver, M. T. Von Breymanntiet al.

  • Galloway, J. N., W. H. Schlesinger, H. Levy, II, A. Michaels and J. L. Schnoor (1995): Nitrogen fixation: Anthropogenic enhancement-environmental response. Global Biogeochem.Cycles, 9, 235–252.

    Google Scholar 

  • Galloway, J. N., R. W. Howarth, A. F. Michaels, S. W. Nixon, J. M. Prospero and F. J. Dentener (1996): Nitrogen and phosphorus budgets of the North Atlantic Ocean and its watershed.Biogeochem., 35, 3–25.

    Google Scholar 

  • Gamo, T. (1999): Global warming may have slowed down the deep conveyor belt of a marginal sea of the northwestern Pacific: Japan Sea. Geophys. Res. Lett., 26, 3137–3140.

    Google Scholar 

  • Gamo, T. and Y. Horibe (1983): Abyssal circulation in the Japan Sea. J. Oceanogr. Soc. Japan, 39, 220–230.

    Google Scholar 

  • Gamo, T., Y. Nozaki, H. Sakai, T. Nakai and H. Tsubota (1986): Spatial and temporal variations of water characteristics in the Japan Sea bottom layer. J. Mar. Res., 44, 781–793.

    Article  Google Scholar 

  • Gamo, T., Y. Kato and H. Hasumoto (1997): Comparative study on chemical characteristics of deep waters of tropical marginal seas: Sulu Sea, Andman Sea and South China Sea.Preliminary Report of the Hakuho Maru Cruise KH-96-5 (Piscis Austrinus Expedition), Ocean Research Institute, University of Tokyo, 149 pp.

  • Gattuso, J.-P., M. Frankignoulle and R. Wollast (1998): Carbon and carbonate metabolism in coastal aquatic ecosystems.Annu. Rev. Ecol. Syst., 29, 405–434.

    Google Scholar 

  • Gladyshev, S. V. (1997): Salt, ice and dense water production in the north Okhotsk Sea coastal polynyas in winter 1995-1996. North Pacific Marine Science Organization (PICES) Sixth Annual Meeting, Pusan, Korea, 14-26 October, 1997, Abstracts p. 14.

  • Gordon, D. C., Jr., P. R. Boudreau, K. H. Mann, J. E. Ong, W.L. Silvert, S. V. Smith, G. Wattayakorn, F. Wulff and T. Yanagi (1996): LOICZ Biogeochemical Modelling Guidelines.LOICZ Report and Studies, No. 5, 96 pp.

  • Gruber, N. and J. L. Sarmiento (1997): Global patterns of marine nitrogen fixation and denitrification. Global Biochem.Cycle, 11, 235–266.

    Google Scholar 

  • Gu, H. K. (ed.) (1991): Marine Chemistry of the Bohai Sea, The Yellow Sea and the East China Sea, Science Press, Beijing, 500 pp.

    Google Scholar 

  • Hahm, D. and K.-R. Kim (2001): An estimation of the new production in the southern East Sea using helium isotopes. J.Kor. Soc. Oceanogr., 36, 19–26.

    Google Scholar 

  • Hartnett, H. E. and A. H. Devol (2003): Role of a strong oxygen-deficient zone in the preservation and degradation of organic matter: A carbon budget for the continental margins of northwest Mexico and Washington State. Geochim.Cosmochim. Acta, 67, 247–264.

    Google Scholar 

  • Hedges, J. I. and R. G. Keil (1995): Sedimentary organic preservation: an assessment and speculative synthesis. Mar.Chem., 49, 81–115.

    Google Scholar 

  • Hedges, J. I., J. A. Baldock, Y. Gelinas, C. Lee, M. L. Peterson and S. G. Wakeham (2002): The biochemical and elemental compositions of marine plankton: A NMR perspective. 40 C.-T. A. Chen tiet al.Mar. Chem., 78, 47–63.

    Google Scholar 

  • Hernes, P. J. and R. Benner (2002): Transport and diagenesis of dissolved and particulate terrigenous organic matter in the North Pacific Ocean. Deep-Sea Res. I, 49, 2119–2132.

    Google Scholar 

  • Hildalgo-Gonzalez, R. M., S. Alvarez-Borrego and A. Zirino (1997): Mixing in the region of the Midrift Islands of the Gulf of California: effect on surface pCO2. Ciencias Marinas, 23, 317–327.

    Google Scholar 

  • Hill, A. E., B. M. Hickey, F. A. Shillington, P. T. Strub, Strub, K. H. Bringk, E. D. Barton and A. C. Thomas (1998): Eastern Ocean Boundaries. p. 29–67. In The Sea, VII, ed. by A.R. Robinson and K. H. Brink, Wiley.

  • Hill, J. K. and P. A. Wheeler (2002): Organic carbon and nitrogen in he northern California current system: comparison of offshore, river plume, and coastally upwelled waters.Prog. Oceanogr., 53, 369–387.

    Google Scholar 

  • Hill, K. L., A. L. Weaver, H. J. Freeland and A. Bychkov (2003): Evidence of change in the Sea of Okhotsk: Implications for the North Pacific. Atmosphere-Ocean, 41, 49–63.

    Google Scholar 

  • Honda, M. C., M. Kusakabe, S. Nakabayashi and M. Katagiri (2000): Radiocarbon of sediment trap samples from the Okinawa trough: lateral transport of 14C-poor sediment from the continental slope. Mar. Chem., 68, 213–247.

    Google Scholar 

  • Hong, G. H. and C. T. A. Chen (2002): Aragonitic pteropod flux to the interior of the East Sea (Japan Sea). Terr. Atmos.and Oceanic Sci., 13, 205–210.

    Google Scholar 

  • Hong, G. H., S. H. Kim, C. S. Chung and S. J. Pae (1995): The role of the anthropogenic nutrient input in the carbon fixation of the coastal ocean Yellow Sea: A preliminary study. p. 13–22. In Direct Disposal of Carbon Dioxide, ed. by N. Handa and T. Ohsumi, Terra Publishing Company, Tokyo.

    Google Scholar 

  • Hu, D., Y. Saito and S. Kempe (1998): Sediment and nutrient transport to the coastal zone. p. 245–270. In Asian Change in the Context of Global Climate Change: Impact of Natural and Anthropogenic Changes in Asia on Global Biogeochemical Cycles, ed. by J. N. Galloway and J. M. Melillo, IGBP Book Series, Cambridge University Press, Cambridge.

    Google Scholar 

  • IGBP (1994): Land-ocean interactions in the coastal zone, implementation plan. Global Change Report, 33, 215 pp.

  • Jahnke, R. A., C. E. Reimers and D B. Craven (1990): Intensification of recycling of organic matter at the sea floor near ocean margins. Nature, 348, 50–54.

    Google Scholar 

  • JGOFS (1997): Report of the JGOFS/LOICZ Workshop on nonconservative fluxes in the continental margins. JGOFS Report No. 25, 25 pp.

  • Jickells, T. D., T. H. Blackburn, C. S. Martens, J. O. Blanton, A. Moll, D. Eisma, R. Scharek, S. W. Fowler, Y. Suzuki, R.F. C. Mantoura and D. Vaulot (1991): Group report: what determines the fate of materials within ocean margins? p. 211–234. In Ocean Margin Processes in Global Change, ed. by R. F. C. Mantoura, J. M. Martin and R. Wollast, John Wiley & Sons.

  • Kang, D.-J. (1999): A study on the carbon cycle in the East Sea. Ph.D. Thesis, Seoul National Univ., 159 pp.

  • Kang, D.-J. and K.-R. Kim (2003): Preliminary results on the carbon cycle in the East Sea. J. Korean Soc. Oceanogr. (submitted).

  • Kang, D. J., M. K. Park and K. R. Kim (2001): Application of AMS Radiocarbon in earth system science studies. J. Korean Phys. Soc., 39, 755–761.

    Google Scholar 

  • Kang, D.-J., S. Park, Y.-G. Kim, K. Kim and K.-R. Kim (2003): A moving-boundary box model (MBBM) for oceans in change: An application to the East/Japan Sea. Geophys. Res.Lett., 30, No. 6, 1299, doi:10.1029/2002GL016486.

    Google Scholar 

  • Kemp, A. E. S. (1995): Laminated sediments from coastal and open ocean upwelling zones: what variability do they record? p. 239–257. In Upwelling in the Ocean: Modern Processes and Ancient Records, ed. by C. P. Summerhayes, K. C. Emeis, M. V. Angel, R. L. Smith and B. Zeitzschel, Wiley.

  • Kempe, S. (1995): Coastal seas: a net source or sink of atmospheric carbon dioxide? LOICZ Report and Studies, No. 1, 27 pp.

  • Kim, K., K.-R. Kim, D. H. Min, Y. Volkov, J.-H. Yoon and M. Takematsu (2001): Warming and structural changes in the East (Japan) Sea: A clue to future changes in global oceans? Geophys. Res. Lett., 28, 3293–3296.

    Google Scholar 

  • Kim, K.-R. and K. Kim (1996): What is Happening in the East Sea (Japan Sea)?: Recent Chemical Observations during CREAMS 93-96. J. Korean Soc. Oceanogr., 31, 164–172.

    Google Scholar 

  • Kim, K.-R., K. Kim, D.-J. Kang, S.-Y. Park, M.-K. Park, Y.-G. Kim, H.-S. Min and D. Min (1999): The East Sea (Japan Sea) in change: A story of dissolved oxygen. MTS Journal, 33, 15–22.

    Google Scholar 

  • Kim, K.-R., G. Kim, K. Kim, V. Lobanov, V. Ponomarev and A. Salyuk (2002a): A sudden bottom-water formation during the severe winter 2000-2001: The case of the East/Japan Sea. Geophys. Res. Lett., 29, 10.1029/2001GL014498.

  • Kim, K.-R., K. Kim, D.-J. Kang, Y. N. Volkov, J.-H. Toon and M. Takematsu (2002b): The changes in the East/Japan Sea found by CREAMS. Oceanogr. in Japan, 11, 419–429 (in Japanese with an English abstract).

    Google Scholar 

  • Kitani, K. (1973): An oceanographic study of the Okhotsk Sea: Particularly in regard to cold waters. Bull. Far Sea Fish. Res. Lab., 9, 45–77.

    Google Scholar 

  • Koike, I. (1993): Microorganisms. p. 102–117. In Tokyo Bay: Its Environmental Change for Recent 100 Years, ed. by N. Ogura, Kouseisha Kouseikaku Press, Tokyo (in Japanese).

    Google Scholar 

  • Konovalov, S. K. and J. W. Murray (2001): Variations in the chemistry of the Black Sea on a time scale of decades (1960-1995). J. Mar. Sys., 31, 217–243.

    Google Scholar 

  • Kudela, R. M. and F. P. Chavez (2002): Multi-Platform remote sensing of new production in central California during the 1997-1998 El Niño. Prog. Oceanogr., 54, 233–249.

    Google Scholar 

  • Lin, S. L., I.-J. Hsieh, K. M. Huang and C. H. Wang (2002a): Influence of the Yangtze River and grain size on the spatial variations of heavy metals and organic carbon in the East China Sea continental shelf sediments. Chem. Geol., 182, 377–394.

    Google Scholar 

  • Lin, S. L., K. M. Huang and S. K. Chen (2002b): Sulfate reduction and iron sulfide mineral formation in the southern East China Sea continental slope sediment. Deep-Sea Res. I, 49, 1837–1852.

    Google Scholar 

  • Liu, K. K., K. Iseki and S.-Y. Chao (2000a): Continental margin carbon fluxes. p. 187–239. In The Changing Ocean Carbon Cycle: A Midterm Synthesis of the Joint Global Ocean Flux Study, ed. by R. B. Hanson, H. W. Ducklow Roles of Continental Shelves and Marginal Seas in the Biogeochemical Cycles of the North Pacific Ocean 41 and J. G. Field, International Geosphere-Biosphere Programme Book Series, Cambridge University Press, Cambridge.

    Google Scholar 

  • Liu, K. K., L. Atkinsion, C. T. A. Chen, S. Gao, J. Hall, R. W. MacDonald, L. Talaue McManus and R. Quinones (2000b): Exploring continental margin carbon fluxes on a global scale. EOS, 81, 641–642 plus 644.

    Google Scholar 

  • Liu, K. K., S. Y. Chao, P. T. Shaw, G. C. Gong, C. C. Chen and T. Y. Tang (2002): Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study. Deep-Sea Res. I, 49, 1387–1412.

    Google Scholar 

  • Loder, J. W., W. C. Boicourt and J. H. Simpson (1998): Western ocean boundary shelves, in the Sea, VII. p. 3–27. In The Global Coastal Ocean, ed. by A. R. Robinson and K.H. Brink, Wiley & Sons.

  • LOICZ (1997): Report of the JGOFS/LOICZ workshop on nonconservative fluxes in the continental margins. LOICZ Meeting Report, 25, 25 pp.

  • Lou, J. Y., C. T. A. Chen and J. K. Wann (1997): Paleoclimatological records of the Great Ghost Lake in Taiwan.Sci. in China, 40, 284–292.

    Google Scholar 

  • Lyu, S. J. and K. Kim (2003): Absolute transport from the sea level difference across the Korea Strait. Geophys. Res. Lett., 30, 18–1~4.

    Google Scholar 

  • Ma, L. M., R. Qiao, B. Zhang, Z. Q. Huang and Y. H. Zhang (1999): Carbon dioxide in the East China Sea. p. 113–123.

  • In Margin Flux in the East China Sea, ed. by D. X. Hu and S. Tsunogai, China Ocean Press, Beijing.

  • Mackas, D. L. and D. R. Yelland (1999): Horizontal flux of nutrients and plankton across and along the British Columbia continental margin. Deep-Sea Res. II, 46, 2941–2967.

    Google Scholar 

  • Mackenzie, F. T. and L. M. Ver (2001): Land-sea global transfers.p. 1443–1453. In Encyclopedia of Ocean Sciences, ed.by J. H. Steel, K. K. Turekian and S. A. Thrope, Academic Press, New York.

    Google Scholar 

  • Mackenzie, F. T., A. Lerman and L. M. B. Ver (1998): Role of continental margin in the global carbon balance during the past three centuries. Geol., 26, 423–426.

    Google Scholar 

  • Mackenzie, F. T., A. Lerman and L. M. Ver (2001): Recent past and future of the global carbon cycle. p. 51–82. In Geological Aspects of the Global Climate, ed. by L. Gerhard and W. Harrison, Am. Assoc. Pet. Geologists Special Publication.

  • Mackenzie, F. T., L. M. Ver and A. Lerman (2002a): Centuryscale nitrogen and phosphorus controls of the carbon cycle.Chem. Geol., 190, 13–32.

    Google Scholar 

  • Mackenzie, F. T., L. M. Ver and A. Lerman (2002b): Coastalzone biogeochemical dynamics under global warming. p. 27–40. In Frontiers in Geochemistry: Organic, Solution, and Deposit Geochemistry, ed. by W. G. Ernst, Konrad Krauskopf Volume 2, Bellwether Publishing Ltd.

  • Manabe, S. and R. J. Stouffer (1993): Century-scale effects of increased atmospheric CO2 on the ocean-atmospheric system.Nature, 364, 215–218.

    Google Scholar 

  • Matear, R. J. and A. C. Hirst (1999): Climate change feedback on the future oceanic CO2 uptake. Tellus, 51B, 722–733.

    Google Scholar 

  • Matsumura, T., N. Horimoto, Y. Xu and T. Ishimaru (2001): Recent trends of nutrients in Tokyo Bay (1989-1998). La mer, 39, 19–32.

    Google Scholar 

  • Matsumura, T., T. Ishimaru and T. Yanagi (2002): Nitrogen and Phosphorus budgets in Tokyo Bay. Oceanogr. in Japan, 11, 613–630.

    Google Scholar 

  • Meybeck, M. (1993): Natural sources of C, N, P, and S. p. 163–93. In Interactions of C, N, P, and S Biogeochemical Cycles and Global Change, ed. by R. Wollast, Springer-Verlag, Berlin.

    Google Scholar 

  • Middelburg, J. J., K. Soetaert, D. M. J. Herman and C. H. R. Heip (1996): Denitrification in marine sediments: a model study. Global Biogeochem. Cycles, 10, 661–673.

    Google Scholar 

  • Milliman, J. D., C. Rutkowski and M. Meybeck (1995): River discharge to the Sea: A Global River Index (GLORI). LOICZ Reports and Studies, No. 2.

  • Minagawa, M., M. Ohashi, T. Kuramoto and N. Noda (2001): N of PON and nitrate as a clue to the origin and transformation of nitrogen in the subartic north Pacific and its marginal sea. J. Oceanogr., 57, 285–300.

    Google Scholar 

  • Miura, T., T. Suga and K. Hanawa (2002): Winter mixed layer and formation of dichothermal water in the Bering Sea. J.Oceanogr., 58, 815–823.

    Google Scholar 

  • Moisan, J. R., E. E. Hofmann and D. B. Haidvogel (1996): Modelling nutrient and plankton processes in the California coastal transition zone. J. Geophys. Res., 101, 22677–22691.

    Google Scholar 

  • Murray, J. W., Z. Top and E. Ozsoy (1991): Hydrographic properties and ventilation of the Black Sea. Deep-Sea Res., 38, S663–689.

    Google Scholar 

  • Nakatsuka, T., C. Yoshikawa, M. Toda, K. Kawamura and M. Wakatsuchi (2002): An extremely turbid intermediate water in the Sea of Okhotsk: Implication for the transport of particulate organic matter in a seasonally ice-bound Sea.Geophys. Res. Lett., 29, No. 16, 10-13, 10.1029/ 2001GL014029.

  • Nakatsuka, T., M. Toda, K. Kawamura and M. Wakatsuchi (2003): Dissolved and particulate organic carbon in the Sea of Okhotsk: their transport from continental shelf to ocean interior. J. Geophys. Res. (submitted).

  • Nedashkovsky, A. P. and V. V. Sapozhnikov (2001): Estimate of CO2 fluxes through the ocean-atmosphere boundary on the basis of hydrochemical parameters measured in the western part of the Bering Sea. Oceanol., 41, 370–378 (in Russian with English abstract).

    Google Scholar 

  • Nixon, S. W., J. W. Ammerman, L. P. Atkinson, V. M. Berounsky, G. Billen, W. C. Boicourt, W. R. Boynton, T.M. Church, D. M. Ditoro, R. Elmgren, J. H. Garber, A. E. Giblin, R. A. Jahnke, N. J. P. Owens, M. E. Q. Pilson and S. P. Seitzinger (1996): The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean. Biogeochem., 35, 141–180.

    Google Scholar 

  • Nojiri, Y., T. Nojiri, T. Machida, G. Inoue and M. Fujinuma (1997): Meridional distribution and secular trend of atmospheric nitrous oxide concentration over the Western Pacific. p. 115–118. In Biogeochemical Processes in the North Pacific, ed. by S. Tsunogai, Japan Marine Science Foundation, Tokyo.

    Google Scholar 

  • Noriki, S., M. Shimizu, K. Hamahara, H. Narita, T. Saino and T. Yanagi (1997): Transportation of particulate material through the mouth of Tokyo Bay to the open ocean. J. 42 C.-T. A. Chen tiet al. Oceanogr., 53, 571–577.

    Google Scholar 

  • Nozaki, Y., D. S. Alibo, H. Amakawa, T. Gamo and H. Hasumoto (1999): Dissolved rare earth elements and hydrography in the Sulu Sea. Geochim. Cosmochim. Acta, 63, 2171–2181.

    Google Scholar 

  • Ogawa, H., T. Usui and I. Koike (2003): Distribution of dissolved organic carbon in the East China Sea. Deep-Sea Res.II, 50, 353–366.

    Google Scholar 

  • Ogi, M., Y. Tachibana, F. Nishio and M. Danchenkov (2001): Does the fresh water supply from the Amur River flowing into the Okhotsk affect sea ice formation? J. Meteo. Soc.Japan, 79, 123–129.

    Google Scholar 

  • Oguri, K., E. Matsumoto, M. Yamada, Y. Saito and K. Iseki (2003): Sediment accumulation rates and budgets of depositing particles of the East China Sea. Deep-Sea Res. II, 50, 513–528.

    Google Scholar 

  • Oh, D.-C., M.-K. Park, S.-H. Choi, D.-J. Kang, S. Y. Park, J. S. Hwang, A. Andreev, G. H. Hong and K.-R. Kim (1999): The air-sea exchange of CO2 in the East Sea (Japan Sea). J.Oceanogr., 55, 157–169.

    Google Scholar 

  • Oh, D.-C., M. K. Park and K. R. Kim (2000): CO2 exchange at air-sea interface in the Huanghai sea. Acta Oceanolog. Sin., 19, 79–89.

    Google Scholar 

  • Ono, T., K. Tadoroko, T. Midorikawa, J. Nishioka and T. Saino (2002): Multi-decadal decrease of net community production in western subarctic North Pacific. Geophys. Res. Lett., 10.1029/2001GLO14332.

  • Otsuki, A., S. Watanabe and S. Tsunogai (2003): Absorption of atmospheric CO2 and its transport to the intermediate layer in the Okhotsk Sea. J. Oceanogr., 59, 709–717.

    Google Scholar 

  • Peterson, B. J., R. M. Holmes, J. W. McClelland, C. J. Vorosmarty, R. B. Lammers, A. I. Shiklomanov, I. A. Shilomanov and S. Rahmstorf (2002): Increasing river discharge to the Arctic Ocean. Science, 298, 2171–2173.

    Google Scholar 

  • Pilskaln, C. H., J. B. Paduan, F. P. Chavez, R. Y. Anderson and W. M. Berelson (1996): Carbon export and regeneration in the coastal upwelling system of Monterey Bay, Central California. J. Mar. Res., 54, 1149–1178.

    Google Scholar 

  • Rabouille, C., F. T. Mackenzie and L. M. Ver (2001): Influence of the human perturbation on carbon, nitrogen, and oxygen biogeochemical cycles in the global coastal ocean. Geochim.Cosmochim. Acta, 65, 3615–3641.

    Google Scholar 

  • Redfield, A. C., B. H. Ketchum and F. A. Richards (1963): The influence of organisms on the composition of seawater. p. 26–77. In The Sea, Vol. 2, ed. by M. N. Hill, Wiley, New York.

    Google Scholar 

  • Reimers, C. E., R. A. Jahnke and D. C. McCorkle (1992): Carbon fluxes and burial rates over the continental slope and rise off Central California with implications for the global carbon cycle. Global Biogeochem. Cycles, 6, 199–224.

    Google Scholar 

  • Riser, S. C., G. I. Yurasov and M. J. Warner (1996): Hydrographic and tracer measurements of the water mass structure and transport in the Okhotsk Sea in early spring. PICES Sci. Rep., 6, 138–143.

    Google Scholar 

  • Rogachev, K. A. (2000): Recent variability in the Pacific western subartic boundary currents and Sea of Okhotsk. Prog.Oceanogr., 47, 299–336.

    Google Scholar 

  • Rogachev, K. A., A. S. Bychkov, E. C. Carmack, P. Ya Tishchenko, A. P. Nedashkovsky and C. S. Wong (1997): Regional carbon dioxide distribution near Kashevarov Bank (Sea of Okhotsk): Effect of tidal mixing. p. 52–69. In Continental Shelf Research, ed. by S. Tsunogai, Japan Marine Science Foundation, Tokyo.

    Google Scholar 

  • San Diego-McGlone, M. L., G. S. Jacinto, V. C. Dupra, I. S. Narcise, O. Padayao and I. B. Velasquez (1999): A comparison of nutrient characteristics and primary productivity in the Sulu Sea and South China Sea. Acta Oceanogr. Taiwan, 37, No. 3, 219–229.

    Google Scholar 

  • Sarmiento, J. L., T. M. C. Hughes, R. S. Stouffer and S. Manabe (1998): Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature, 393, 245–249.

    Google Scholar 

  • Seitzinger, S. P. (2000): Scaling up: Site-specific measurements to global-scale estimates of denitrification. p. 211–240. In Estuarine Science, ed. by J. E. Hobbie, Island Press, Washington, D.C.

    Google Scholar 

  • Seitzinger, S. P., C. Kroeze and R. V. Styles (2000): Global distribution of N2O emissions from aquatic systems: natural emissions and anthropogenic effects. Chemosph. Glo.Change Sci., 2, 267–279.

    Google Scholar 

  • Sharma, S., L. A. Barrie, D. Plummer, J. C. McConnell, P. C. Brickell, M. Levasseur, M. Gosseliln and T. S. Bates (1999): Flux estimation of oceanic dimethyl sulfide around North America. J. Geophys. Res., 104(D17), 21327–21342.

    Google Scholar 

  • Shaw, P. T., S. Y. Chao, K. K. Liu, S. C. Pai and C. T. Liu (1996): Winter upwelling off Luzon in the north-eastern South China Sea. J. Geophys. Res., 101, 16435–16448.

    Google Scholar 

  • Smith, S. V. and J. T. Hollibaugh (1993): Coastal metabolism and the oceanic carbon balance. Rev. Geophys., 31, 75–89.

    Google Scholar 

  • Smith, S. V. and F. T. Mackenzie (1987): The ocean as a net heterotrophic system: Implications from the carbon biogeochemical cycle. Global Biogeochem. Cycles, 1, 187–198.

    Google Scholar 

  • Smith, S. V., D. P. Swaney, L. Talaue-McManus, J. D. Bartley, P. T. Sandhei, C. J. McLaughlin, V. C. Dupra, C. J. Crossland, R. W. Buddemeier, B. A. Maxwell and F. Wulff (2003): Humans, hydrology, and the distribution of inorganic nutrient loading to the ocean. BioScience, 53, 235–245.

    Google Scholar 

  • Smoak, J. M., W. S. Moore, R. C. Thunell and T. J. Shaw (1999): Comparison of 234Th, 228Th, and 210Pb fluxes with fluxes of major sediment components in the Guaymas Basin, Gulf of California. Mar. Chem., 65, 177–194.

    Google Scholar 

  • Takahashi, K. (1995): Opal particle flux in the subarctic Pacific and Bering Sea and sidocoenosis preservation hypothesis. Proceedings, 1994 Sapporo IGBP Symposium, 14-17 Nov., 1994, Sapporo, p. 458–466.

  • Takahashi, K. (1999): The Okhotsk and Bering Sea: Critical marginal seas for the land-ocean linkage. In Land-Sea Link in Asia, Proceedings of an International Workshop on Sediment Transport and Storage in Coastal Sea-Open System, Tsukuba, Japan, March 15-19, 1999, p. 341–353.

  • Takahashi, K., N. Fujitani and M. Yanada (2002): Long term monitoring of particle fluxes in the Bering Sea and the central subarctic Pacific Ocean, 1990-2000. Prog. Oceanogr., 55, 95–112.

    Google Scholar 

  • Takizawa, T. (1982): Characteristics of the Soya Warm Current in the Okhotsk Sea. J. Oceanogr. Soc. Japan, 38, 281–292.

    Google Scholar 

  • Talley, L. D. (1996): North Pacific Intermediate Water Formation and the Role of the Okhotsk Sea. PICES Sci. Rep., 6, Roles of Continental Shelves and Marginal Seas in the Biogeochemical Cycles of the North Pacific Ocean 43 150–157.

    Google Scholar 

  • Talley, L. D. and Y. Nagata (eds.) (1995): The Okhotsk Sea and Oyashio region. PICES Sci. Rep., 2, 227 pp.

  • Tsunogai, S., M. Kusakabe, H. Iizumi, I. Koide and A. Hattori (1979): Hydrographic features of the deep water of the Bering Sea-the sea of silica. Deep-Sea Res., 26/6A, 641–659.

    Google Scholar 

  • Tsunogai, S., S. Watanabe, M. Honda and T. Aramaki (1995): North Pacific Intermediate Water studied chiefly with radiocarbon.J. Oceanogr., 51, 519–536.

    Google Scholar 

  • Tsunogai, S., S. Watanabe and T. Sato (1999): Is there a continental shelf pump for the absorption of atmospheric CO2. Tellus, 51B, 701–712.

    Google Scholar 

  • Tsunogai, S., K. Iseki, M. Kusakabe and Y. Saito (2003): Biogeochemical cycles in the East China Sea: MASFLEX program. Deep-Sea Res. II, 50, 321–326.

    Google Scholar 

  • Tsurushima, N., S. Watanabe and S. Tsunogai (1996): Methane in the East China Seawater. J. Oceanogr., 52, 221–233.

    Google Scholar 

  • Uda, M. (1934): The Results of simultaneous oceanographic investigations in the Japan Sea and its adjacent waters in May and June, 1932. J. Imperial Fishery Experimental Stations, 5, 57–190 (in Japanese).

    Google Scholar 

  • Uzuka, N., S. Watanabe and S. Tsunogai (1997): DMS in the North Pacific and its adjacent seas. p. 127–135. In Biogeochemical Processes in the North Pacific, ed. by S. Tsunogai, Japan Mar. Sci. Found, Tokyo.

    Google Scholar 

  • Vörösmarty, C. J., C. Li, J. Sun and Z. Dai (1998): Emerging impacts of anthropogenic change on global river systems: The Chinese example. p. 210–244. In Asian Change in the Context of Global Change: Impacts of Natural and Anthropogenic Changes in Asia on Global Biogeochemical Cycles, ed. by J. Galloway and J. Melillo, Cambridge University Press, Cambridge.

    Google Scholar 

  • Wakatsuchi, M. and S. Martin (1991): Water circulation in the Kuril Basin of the Okhotsk Sea and its relation to eddy formation. J. Oceanogr. Soc. Japan, 47, 152–168.

    Google Scholar 

  • Walsh, J. J. (1988): On the Nature of Continental Shelves, San Diego. Academic Press, London, 520 pp.

    Google Scholar 

  • Walsh, J. J. (1989): Arctic carbon sinks: present and future.Global Biogeochem. Cycles,3, 393–411.

    Article  Google Scholar 

  • Walsh, J. J. (1991): Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen.Nature, 350, 53–55.

    Google Scholar 

  • Walsh, J. J. (1995): DOC storage in Arctic Seas: the role of continental shelves. Coast. Estua. Stu.,49, 203–230.

    Google Scholar 

  • Walsh, J. J. (1996): Nitrogen fixation within a tropical upwelling ecosystem: Evidence for a Redfield budget of carbon/nitrogen cycling by the total phytoplankton community. J. Geophys. Res., 101, 20607–20616.

    Google Scholar 

  • Walsh, J. J. and D. A. Dieterle (1994): CO2 cycling in the coastal ocean. I-A numerical analysis of the southeastern Bering Sea with applications to the Chukchi Sea and the north Gulf of Mexico. Prog. Oceanogr., 34, 335–392.

    Google Scholar 

  • Walsh, J. J. and C. P. McRoy (1986): Ecosystem analysis in the southeastern Bering Sea. Cont. Shelf Res., 5, 259–288.

    Google Scholar 

  • Walsh, J. J., G. T. Rowe, R. C. Iverson and C. P. M. McRoy (1981): Biological export of shelf carbon is a sink of the global CO2 cycle. Nature, 291, 196–201.

    Google Scholar 

  • Walsh, J. J., E. T. Premuzic, J. S. Gaffney, G. T. Rowe, G. Harbottle, R. W. Stoenner, W. L. Balsam, P. R. Betzer and S. A. Macko (1985): Organic storage of CO2 on the continental slope off the mid-Atlantic bight, the southeastern Bering Sea and the Peru coast. Deep-Sea Res., 32, 853–883.

    Google Scholar 

  • Walsh, J. J., C. P. McRoy, L. K. Coachman, L. K. Goering, J. J. Nihoul, J. J. Whitledge, T. E. Blackburn, T. H. Parker, P. L. Wirick, C. D. Shuert, P. G. Gremeir, J. M. Springer, A. M. Tripp, R. D. Hansell, D. A. Dienidi, S. Delersnijder, E. Henriksen, K. Lund, B. A. Andersen, P. F. E. Muller-Karger and K. Dean (1990): Carbon and nitrogen cycling within the Bering/Chukchi Seas: Source regions for organic matter effecting AOU demands of the Arctic Ocean. Prog. Oceanogr., 22, 277–359.

    Google Scholar 

  • Walsh, J. J., D. A. Dieterle and J. R. Pribble (1991): Organic debris on the continental margins: a simulation analysis of source and fate. Deep-Sea Res. I, 38, 805–828.

    Google Scholar 

  • Warner, M. J. and G. I. Roden (1995): Chlorofluorocarbon evidence for recent ventilation of the deep Bering Sea. Nature, 373, 409–412.

    Google Scholar 

  • Watanabe, S., N. Takei and S. Tsunogai (1997): Nitrous oxide in he coastal seas. p. 119–126. In Biogeochemical Processes in the North Pacific, ed. by S. Tsunogai, Japan Marine Science Foundation, Tokyo.

    Google Scholar 

  • Watanabe, S., M. Wakita, K. Igarashi, S. Tsunogai and M. Wakatsuchi (2001): Spatial distribution of carbon dioxide fugacity in the Sea of Okhotsk. p. 102–103. In Proceedings of the International Symposium on Atmosphere-Ocean-Cryosphere Interaction in the Sea of Okhotsk and the Surrounding Environment, ed. by M. Wakatsuchi and T. Hara, Inst. of Low Temp. Sci., Hokkaido Univ., Sapporo.

    Google Scholar 

  • Watanabe, T. and M. Wakatsuchi (1998): Formation of 26.8-26.9 sigma-??water in the Kuril Basin of the Sea of Okhotsk as a possible origin of North Pacific Intermediate Water. J. Geophys. Res., 103, 2849–2865.

    Google Scholar 

  • Watanabe, Y. W., S. Watanabe and S. Tsunogai (1991): Tritium in the Japan Sea and the renewal time of the Japan Sea deep water. Mar. Chem., 34, 97–108.

    Google Scholar 

  • Watanabe, Y. W., T. Ono, A. Shimamoto, T. Sugimoto, M. Wakita and S. Watanabe (2001): Probability of a reduction in the formation rate of the subsurface water in the North Pacific during the 1980s and 1990s. Geophys. Res. Lett., 28, 3289–3292.

    Google Scholar 

  • Wheeler, P. A., J. M. Watkins and R. L. Hansing (1997): Nutrients, organic carbon and organic nitrogen in the upper water column of the Arctic Ocean: implications for the sources of dissolved organic carbon. Deep-Sea Res. II, 44, 1571–1592.

    Google Scholar 

  • Whitney, F. A. and D. W. Welch (2002): Impact of the 1997-1998 El Niño on nutrient supply in the Gulf of Alaska. Prog. Oceanogr., 54, 405–421.

    Google Scholar 

  • Wiesner, M. G., L. Zheng and H. K. Wong (1996a): Fluxes of pariculate matter in the South China Sea. p. 293–312. In Particle Flux in the Ocean, Scope 57, ed. by V. Ittekot, Chichester.

  • Wiesner, M. G., Y. Wang and L. Zheng (1996b): Fallout of volcanic ash to the deep South China Sea induced by the 1991 eruption of Mount Pinatubo (Philippines). Oceanogr. Lit.Rev., 43, p. 258.

    Google Scholar 

  • Wollast, R. (1998): Evaluation and comparison of the global carbon cycle in the coastal zone and in the open ocean. p. 213–252. In The Sea, Vol. 10, ed. by K. H. Brink and A. R. Robinson, Wiley & Sons.

  • Wong, C. S., R. J. Matear, H. J. Freeland, F. A. Whitney and A. S. Bychkov (1998): WOCE line P1W in the Sea of Okhotsk, 2, CFC's and the formation rate of intermediate water. J. Geophys. Res., 103, 15625–15642.

    Google Scholar 

  • Wong, C. S., Z. Yu, N. A. D. Waser, F. A. Whitney and W. K. Johnson (2002): Seasonal changes in the distribution of dissolved organic nitrogen in coastal and open-ocean waters in the North East Pacific: sources and sinks. Deep-Sea Res. II, 49, 5759–5773.

    Google Scholar 

  • Wong, G. T. F. (2002): Nitrate anomaly in the upper nutricline in the northern South China Sea-Evidence of nitrogen fixation.Geophys. Res. Lett., 29, 2097, doi:10.1029/ 2002GL015796.

  • Wyrtki, K. (1961): Physical oceanography of the southeast Asian waters. Scientific results of marine investigations of the South China Sea and the Gulf of Thailand, Scripps Institution of Oceanography, La Jolla, California, NAGA Report, Vol. 2, 195 pp.

    Google Scholar 

  • Yamamoto, M., N. Tanaka and S. Tsunogai (2001): Okhotsk Sea intermediate water formation deduced from oxygen isotope systematics. J. Geophys. Res., 106, 31075–31084.

    Google Scholar 

  • Yamamoto, M., S. Watanabe, S. Tsunogai and M. Wakatsuchi (2002): Effects of sea ice formation and diapycnal mixing on the Okhotsk Sea intermediate water clarified with oxygen isotopes. Deep-Sea Res. I, 49, 1165–1174.

    Google Scholar 

  • Yamamoto, M., S. Watanabe, S. Tsunogai and M. Wakatsuchi (2003): Chlorofluorocarbons in the Okhotsk Sea: ventilation of the intermediate water. J. Geophys. Res. (submitted).

  • Yanagi, T. (2002): Water, salt, phosphorus and nitrogen budgets of the Japan Sea. J. Oceanogr., 58, 797–804.

    Google Scholar 

  • Yoshimura, T. and I. Kudo (2003): Riverine nutrient loadings and their impact on primary production in Funka Bay, Japan.Oceanogr. in Japan, 12, 185–193 (in Japanese with English abstract).

    Google Scholar 

  • Zhang, J. B. (1991): Marine Atlas of Bohai Sea, Yellow Sea, East China Sea. Marine Biology. China Ocean Press, Beijing, 250 pp. (in Chinese).

    Google Scholar 

  • Zhang, S. L. and H. K. Gu (1994): Marine chemistry in northern seas of China. p. 157–170. In Oceanography of China Seas, Vol. 1, ed. by D. Zhou, Y. B. Liang and C. K. Zeng, Kluwer Academic Publishers.

  • Zirino, A., J. M. Hernandez-Ayon, R. A. Fuhrmann, S. Alvarez-Borrego, G. Gaxiola-Castro, J. R. Lara-Lara and R. L. Bernstein (1997): Estimate of surface pCO2 in the Gulf of California from underway pH measurements and satellite imagery. Cien. Mar., 23, 1–22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CT.A., Andreev, A., Kim, KR. et al. Roles of Continental Shelves and Marginal Seas in the Biogeochemical Cycles of the North Pacific Ocean. Journal of Oceanography 60, 17–44 (2004). https://doi.org/10.1023/B:JOCE.0000038316.56018.d4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOCE.0000038316.56018.d4

Navigation