Skip to main content
Log in

Reaction of the dicobalt alkyne compound Co2(CO)6(μ-dmad) with the diphosphine ligand 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd). Spectroscopic properties, X-ray diffraction data, and thermal reactivity of the chelating isomer of Co2(CO)4(bpcd)(μ-dmad)

  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Treatment of Co2(CO)6(μ-dmad) (where dmad = dimethyl acetylenedicarboxylate) with the bidentate ligand 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) in the presence of added Me3NO affords the new alkyne compound Co2(CO)4(bpcd)(μ-dmad) in good yield. Both IR and 31P NMR spectroscopies indicate that the bpcd ligand is coordinated to a single cobalt center in a chelating fashion in solution. The solid-state structure of Co2(CO)4(bpcd)(μ-dmad) is identical to the solution structure Co2(CO)4(bpcd)(μ-dmad), as determined by X-ray diffraction analysis. Co2(CO)4(bpcd)(μ-dmad) crystallizes in the triclinic space group P-1, a = 10.7460(8) Å, b = 11.628(2) Å, c = 15.077(1) Å, α = 95.831(9)°, β = 91.205(7)°, γ = 101.526(9)°, V = 1834.7(3) Å3, Z = 2, and d calc = 1.514 g/cm3; R = 0.0489, R w = 0.0528 for 2854 reflections with I > 3σ(I). The thermal reactivity of Co2(CO)4(bpcd)(μ-dmad) has been briefly explored by spectroscopic methods, and evidence is presented for the attack of one of the PPh2 groups on an alkyne carbon atom in Co2(CO)4(bpcd)(μ-dmad) to from the zwitterionic hydrocarbyl compound Co2(CO)4(μ2211-(MeO2C)=C(CO2Me)PPh2C=C(PPh2)C(O)CH2C(O)] upon thermolysis. The redox chemistry of both Co2(CO)4(bpcd)(μ-dmad) and Co2(CO)4[μ2211-(MeO2C) C=C(CO2Me)PPh2C=C(PPh2)C(O)CH2C(O)] has been explored by cyclic voltammetery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chia, L.S.; Cullen, W.R.; Franklin, M.; Manning, A.R. Inorg. Chem. 1975, 14, 2521.

    Google Scholar 

  2. Bianchini, C.; Dapporto, P.; Meli, A. J. Organomet. Chem. 1979, 174, 205.

    Google Scholar 

  3. Bird, P.H.; Fraser, A.R.; Hall, D.N. Inorg. Chem. 1977, 16, 1923.

    Google Scholar 

  4. Crow, J.P.; Cullen, W.R. Inorg. Chem. 1971, 10, 2165.

    Google Scholar 

  5. Sappa, E.; Predieri, G.; Marko, L. Inorg. Chim. Acta 1995, 228, 147.

    Google Scholar 

  6. Cunninghame, R.G.; Hanton, L.R.; Jensen, S.D.; Robinson, B.H.; Simpson, J. Organometallics 1987, 6, 1470.

    Google Scholar 

  7. Jensen, S.D.; Robinson, B.H.; Simpson, J. Organometallics 1987, 6, 1479.

    Google Scholar 

  8. McAdam, C.J.; Duffy, N.W.; Robinson, B.H.; Simpson, J. Organometallics 1996, 15, 3935.

    Google Scholar 

  9. McAdam, C.J.; Duffy, N.W.; Robinson, B.H.; Simpson, J. J. Organomet. Chem. 1997, 527, 197.

    Google Scholar 

  10. Hore, L.-A.; McAdam, C.J.; Kerr, J.L.; Duffy, N.W.; Robinson, B.H.; Simpson, J. Organometallics 2000, 19, 5039.

    Google Scholar 

  11. Yang, K.; Bott, S.G.; Richmond, M.G. Organometallics 1994, 13, 3788.

    Google Scholar 

  12. Yang, K.; Bott, S.G.; Richmond, M.G. Organometallics, 1994, 13, 3767; 1995, 14, 4977.

    Google Scholar 

  13. Yang, K.; Bott, S.G.; Richmond, M.G. J. Organomet. Chem. 1995, 516, 65.

    Google Scholar 

  14. Fenske, D.; Becher, H.J. Chem. Ber. 1974, 107, 117.

    Google Scholar 

  15. Fenske, D. Chem. Ber. 1979, 112, 363.

    Google Scholar 

  16. Fenske, D.; Becher, H.J. Chem. Ber. 1975, 108, 2115.

    Google Scholar 

  17. Bott, S.G.; Yang, K.; Richmond, M.G. J. Chem. Crystallogr. 2000, 30, 627.

    Google Scholar 

  18. Greenfield, H.; Sternberg, H.W.; Friedel, R.A.; Wotiz, J.H.; Markby, R.; Wender, I. J. Am. Chem. Soc. 1956, 78, 120.

    Google Scholar 

  19. Cetini, G.; Gambino, O.; Rosetti, R.; Sappa, E. J. Organomet. Chem. 1967, 8, 149.

    Google Scholar 

  20. Shriver, D.F. The Manipulation of Air-Sensitive Compounds; McGraw-Hill: New York, 1969.

    Google Scholar 

  21. Bard, A.J.; Faulkner, L.R. Electrochemical Methods; Wiley: New York, 1980.

    Google Scholar 

  22. Koelle, U. J. Organomet. Chem. 1977, 133, 53.

    Google Scholar 

  23. Albers, M.O.; Coville, N. Coord. Chem. Rev. 1984, 53, 227.

    Google Scholar 

  24. Rao, C.N.R. Chemical Applications of Infrared Spectroscopity; Academic Press: New York, 1963.

    Google Scholar 

  25. Dolphin, D.; Wick, A. Tabulation of Infrared Spectral Data; Wiley-Interscience: New York, 1977.

    Google Scholar 

  26. Shen, H.; Williams, T.J.; Bott, S.G.; Richmond, M.G. J. Organomet. Chem. 1995, 505, 1.

    Google Scholar 

  27. Shen, H.; Bott, S.G.; Richmond, M,G. Organometallics 1995, 14, 4625.

    Google Scholar 

  28. Bott, S.G.; Yang, K.; Wang, J.C.; Richmond, M.G. Inorg. Chem. 2000, 39, 6051.

    Google Scholar 

  29. Bott, S.G.; Shen, H.; Senter, R.A.; Richmond, M.G. Organometallics 2003, 22, 1953.

    Google Scholar 

  30. Garrou, P.E. Chem. Rev. 1981, 81, 229.

    Google Scholar 

  31. Richmond, M. G.; Kochi, J.K. Organometallics 1987, 6, 254.

    Google Scholar 

  32. Thorn, D.L.; Hoffmann, R. Inorg. Chem. 1978, 17, 126.

    Google Scholar 

  33. Mingos, D.M.P.; May, A.S. In The Chemistry of Metal Cluster Compounds; Shriver, D.F.; Kaesz, H.D.; Adams, R.D., Eds.; VCH Publishers: New York, 1990; Chapter 2.

    Google Scholar 

  34. Mingos, D.M.P.; Wales, D.J. Introduction to Cluster Chemistry; Prentice Hall: Englewood Cliffs, NJ, 1990.

    Google Scholar 

  35. Hanson, B.E.; Mancini, J.S. Organometallics 1983, 2, 126.

    Google Scholar 

  36. Cotton, F.A.; Jamerson, J.D.; Stults, B.R. J. Am. Chem. Soc. 1976, 98, 1774.

    Google Scholar 

  37. Gregson, D.; Howard, J.A.K. Acta Crystallogr. 1983, C39, 1024.

    Google Scholar 

  38. Bonner, J.-J.; Mathieu, R. Inorg. Chem. 1978, 17, 1973.

    Google Scholar 

  39. Fronczek, F.R.; Erickson, M.S. J. Chem. Crystallogr. 1995, 25, 737.

    Google Scholar 

  40. Orpen, A.G.; Brammer, L.; Allen, F. H.; Kennard, O.; Watson, D. G.; Taylor, R. J. Chem. Soc. Dalton Trans. 1988, Sl.

  41. Duffy, N.W.; McAdam. C.J.; Robinson, B.H.; Simpson. J. J. Organoment. Chem. 1998, 565, 19.

    Google Scholar 

  42. Kissinger, P.T.; Heineman, W. R. Laboratory Techniques in Electroanalytical Chemistry; Marcel Dekker: New York, 1984.

    Google Scholar 

  43. Gosser, D.K., Jr. Cyclic Voltammetry; VCH Publishers: New York, 1993.

    Google Scholar 

  44. Peake, B.M.; Rieger, P.H.; Robinson, B.H.; Simpson, J. J. Am. Chem. Soc. 1980, 102, 156.

    Google Scholar 

  45. Casagrande, L.V.; Chen, T.; Rieger, P.H.; Robinson, B.H.; Simpson, J.; Visco, S.J. Inorg. Chem. 1984, 23, 2019.

    Google Scholar 

  46. Arewgoda, C.M.; Rieger, P.H.; Robinson, B.H.; Simpson, J.; Visco, S.J. J. Am. Chem. Soc. 1982, 104, 5633.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, CG., Bott, S.G. & Richmond, M.G. Reaction of the dicobalt alkyne compound Co2(CO)6(μ-dmad) with the diphosphine ligand 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd). Spectroscopic properties, X-ray diffraction data, and thermal reactivity of the chelating isomer of Co2(CO)4(bpcd)(μ-dmad). Journal of Chemical Crystallography 34, 513–521 (2004). https://doi.org/10.1023/B:JOCC.0000042019.54785.9a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOCC.0000042019.54785.9a

Navigation