Skip to main content
Log in

Charge Transport in Poly(dG)–Poly(dC) and Poly(dA)–Poly(dT) DNA Polymers

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

We investigate the charge transport in synthetic DNA polymers built up from single type of base pairs. In the context of a polaronlike model, for which an electronic tight-binding system and bond vibrations of the double helix are coupled, we present estimates for the electron-vibration coupling strengths utilizing a quantum-chemical procedure. Subsequent studies concerning the mobility of polaron solutions, representing the state of a localized charge in unison with its associated helix deformation, show that the system for poly(dG)–poly(dC) and poly(dA)–poly(dT) DNA polymers, respectively possess quantitatively distinct transport properties. While the former supports unidirectionally moving electron breathers attributed to highly efficient long-range conductivity, the breather mobility in the latter case is comparatively restrained, inhibiting charge transport. Our results are in agreement with recent experimental results demonstrating that poly(dG)–poly(dC) DNA molecules acts as a semiconducting nanowire and exhibit better conductance than poly(dA)–poly(dT) ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ratner, M.: Nature 397 (1999), 480.

    Google Scholar 

  2. Kasumov, A.Yu., Kociak, M., Gueron, S., Reulet, B., Volkov, V.T., Klinov, D.V. and Bouchiat, H.: Science 291 (2001), 280.

    Google Scholar 

  3. Meggers, E., Michel-Beyerle, M.E. and Giese, B.J.: Am. Chem. Soc. 120 (1998), 12950; Fink, H.-W. and Sch¨ onenberger, C.: Nature 398 (1999), 407; Tran, P., Alavi, B. and Gruner, G.: Phys. Rev. Lett. 85 (2000), 1564; Giese, B., Amaudrut, J., K¨ ohler, A.K., Spormann, M. and Wessely, S.: Nature 412 (2001), 318 and references therein.

    Google Scholar 

  4. Bruinsma, R., Grüner, G., D'Orsogna, M.R. and Rudnick, J.: Phys. Rev. Lett. 85 (2000), 4393.

    Google Scholar 

  5. Conwell, E. and Rakhmanova, S.V.: Proc. Natl. Acad. Sci. USA 97 (2000), 4556; Rakhmanova, S.V. and Conwell, E.M.: J. Phys. Chem. B 105 (2001), 2056.

    Google Scholar 

  6. Ly, D., Sanii, L. and Schuster, G.B.: J. Am. Chem. Soc. 121 (1999), 9400.

    Google Scholar 

  7. Komineas, S., Kalosakas, G. and Bishop, A.R.: Phys. Rev. E 65 (2002), 061905.

    Google Scholar 

  8. Basko, D.M. and Conwell, E.M.: Phys. Rev. E 65 (2002), 061902.

    Google Scholar 

  9. Cai, L., Tabata, H. and Kawai, T.: Appl. Phys. Lett. 77 (2000), 3105; Yoo, K.-H., Ha, D.H., Lee, J.-O., Park, J.W., Kim, Jinhee, Kim, J.J. Lee, H.-Y., Kawai, T. and Choi, Han Yong: Phys. Rev. Lett. 87 (2001), 198102; Lee, H.-Y., Tanaka, H., Otsuka, Y., Yoo, K.-H., Lee, J.-O and Kawai, T.: Appl. Phys. Lett. 80 (2002), 1670.

    Google Scholar 

  10. Porath, D., Bezryadin, A., de Vries, S. and Dekker, C.: Nature 403 (2000), 635.

    Google Scholar 

  11. Hennig, D., Archilla, J.F.R. and Agarwal, J.: Physica D 180 (2003), 256.

    Google Scholar 

  12. Hennig, D.: Eur. Phys. J. B 30 (2002), 211.

    Google Scholar 

  13. Stryer, L.: Biochemistry, Freeman, New York, 1995.

    Google Scholar 

  14. Agarwal, J. and Hennig, D.: Physica A 323 (2003), 519.

    Google Scholar 

  15. Barbi, M., Hennig, D. and Peyrard, M.: Phys. Lett. A 253 (1999), 358.

    Google Scholar 

  16. Saenger, W.: Principles of Nucleic Acid Structure, Springer-Verlag, New York, 1984.

    Google Scholar 

  17. Brunaud, G., Castet, F., Fritsch, A., Kreissler, M. and Ducasse, L.: J. Phys. Chem. B 105 (2001), 12665..

    Google Scholar 

  18. Cuniberti, G., Craco, L., Porath, D. and Dekker, C.: Phys. Rev. B 65 (2002), 241314(R).

    Google Scholar 

  19. Stewart, J.J.P.: J. Comp. Chem. 10 (1989), 209.

    Google Scholar 

  20. Starikov, E.B.: Phys. Chem. Chem. Phys. 4 (2002), 4523.

    Google Scholar 

  21. Fortunelli, A. and Painelli, A.: Phys. Rev. B 55 (1997), 16088.

    Google Scholar 

  22. Chen, E.S. and Chen, E.C.M.: Biochem. Biophys. Res. Commun. 289 (2001), 421.

    Google Scholar 

  23. Kalosakas, G., Aubry, S. and Tsironis, G.P.: Phys. Rev. B 58 (1998), 3094.

    Google Scholar 

  24. Ibanes, M., Sancho, J.M. and Tsironis, G.P.: Phys. Rev. E 65 (2002), 041902.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hennig, D., Starikov, E.B., Archilla, J.F.R. et al. Charge Transport in Poly(dG)–Poly(dC) and Poly(dA)–Poly(dT) DNA Polymers. Journal of Biological Physics 30, 227–238 (2004). https://doi.org/10.1023/B:JOBP.0000046721.92623.a9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOBP.0000046721.92623.a9

Keywords

Navigation