Skip to main content
Log in

AM1 Study of N-2-Acetylaminofluorene bonded to Deoxyguanosine at the Minor Adduct Site

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

We have computed the total energy as a function of six important torsion angles of the carcinogen N-2-acetylaminofluorene (AAF) bonded to thenitrogen N2 of deoxyguanosine using the semiempirical quantum mechanical method AM1. One global minimum and one local minimum are found separated by a modest barrier. We have computed the normal-mode frequencies of the relevant torsional motions and have determined the rate of conversion betweenthe two minima.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nesnow, S., Argus, M., Bergman, H., Chu, K., Frith, C., Helmes, T., McGaughy, R., Ray, V., Slaga, T.J., Tennant, R. and Weisburger, E.: Chemical Carcinogens. A Review and Analysis of the Literature of Selected Chemicals and the Establishment of the Gene-Tox Carcinogen Data Base. The U.S. Environmental Protection Agency Gene-Tox Program, Mutat. Res. 185(1988), 1–195.

    Google Scholar 

  2. Kriek, E., Miller, J.A., Juhl, U. and Miller, E.C.: 8-(N-2-fluorenylacetamido) Guanosine, an Arylamidation Reaction Product of Guanosine and the Carcinogen N-acetoxy-N-2-fluorenylacetamide in Neutral Solution, Biochemistry 6(1967), 177–182.

    Google Scholar 

  3. Kriek, E.: Persistent Binding of a New Reaction Product of the Carcinogen N-hydroxy-N-2-acetylaminofluorene with Guanine in Rat Liver DNA in vivo, Cancer Res. 32(1972), 2042–2048.

    Google Scholar 

  4. Westra, J.G., Kriek, E. and Hittenhausen, H.: Identification of the Persistently Bound Form of the Carcinogen N-acetyl-2-aminofluorene to Rat Liver DNA in vivo, Chem. Biol. Interactions 15(1976), 149–164.

    Google Scholar 

  5. Yamasaki, H., Leffler, S. and Weinstein, I.B.: Effect of N-2-acetylaminofluorene Modification on the Structure and Template Activity of DNA and Reconstituted Chromatin, Cancer Res. 37(1977), 684–691.

    Google Scholar 

  6. Yamasaki, H., Pulkrabek, P., Grunberger, D. and Weinstein, I.B.: Differential Excision from DNA of the C8 and N2 Guanosine Adducts of N-acetyl-2-aminofluorene by Single Strand-Specific Endonucleases, Cancer Res. 37(1977), 3756–3760.

    Google Scholar 

  7. Santella, R.M., Grunberger, D., Weinstein, I.B. and Rich, A.: Induction of the Z Conformation in poly(dG-dC).poly(dG-dC) by Binding of N-2-acetylaminofluorene to Guanine Residues, Proc. Natl. Acad. Sci. USA 78(1981), 1451–1455.

    Google Scholar 

  8. Burnouf, D., Koehl, P. and Fuchs, R.P.P.: Single Adduct Mutagenesis: Strong Effect of the Position of a Single Acetylaminofluorene Adduct within aMutation Hot Spot, Proc. Natl. Acad. Sci. USA 86(1989), 4147–4151.

    Google Scholar 

  9. Gupta, P.K., Pandrangi, R.G., Lee, M.S. and King, C.M.: Induction of Mutations by N-acetoxy-N-acetyl-2-aminofluorene modified M13 Viral DNA, Carcinogenesis 12(1991), 819–824.

    Google Scholar 

  10. Shibutani, S., Suzuki, N. and Grollman, A.P.: Mutagenic Specificity of (acetylamino) Fluorenederived DNA Adducts in Mammalian Cells, Biochemistry 37(1998), 12034–12041.

    Google Scholar 

  11. Irving, C.C. and Veazey, R.A.: Persistent Binding of 2-acetylaminofluorene to Rat Liver DNA in vivoand Consideration of the Mechanism of Binding of N-hydroxy-2-acetylaminofluorene to Rat Liver Nucleic Acids, Cancer Res. 29(1969), 1799–1804.

    Google Scholar 

  12. Kriek, E.: Carcinogenesis by Aromatic Amines, Biochim. Biophys. Acta 355(1974), 177–203.

    Google Scholar 

  13. Kriek, E. and Westra, J.G.: Structural Identification of the Pyrimidine Derivatives formed from N-(deoxyguanosin-8-yl)-2-aminofluorene in Aqueous Solution at Alkaline pH, Carcinogenesis 1(1980), 459–468.

    Google Scholar 

  14. Fuchs, R.P.P. and Daune, M.P.: Physical Studies on Deoxyribonucleic Acid after Covalent Binding of a Carcinogen, Biochemistry 11(1972), 2659–2666.

    Google Scholar 

  15. Fuchs, R.P.P. and Daune, M.P.: Dynamic Structure of DNA modified with the Carcinogen Nacetoxy-N-2-acetylaminofluorene, Biochemistry 13(1974), 4435–4440.

    Google Scholar 

  16. Fuchs, R.P.P.: In VitroRecognition of Carcinogen-Induced Local Denaturation Sites Native DNA by S1 Endonuclease from Aspergillus oryzae, Nature 257(1975), 151–152.

    Google Scholar 

  17. Fuchs, R.P.P., Lefevre, J.F., Pouyet, J. and Daune, M.P.: Comparative Orientation of the Fluorene Residue in Native DNA modified by N-acetoxy-N-2-acetylaminofluorene and two 7-halogeno Derivatives, Biochemistry 15(1976), 3347–3351.

    Google Scholar 

  18. Hingerty, B. and Broyde, S.: Conformation of the Deoxydinucleoside Monophosphate dCpdG modified at Carbon 8 of Guanine with 2-(acetylamino) Fluorene, Biochemistry 21(1982), 3243–3252.

    Google Scholar 

  19. Broyde, S. and Hingerty, B.: Conformation of 2-aminofluorene-modified DNA, Biopolymers 22(1983), 2423–2441.

    Google Scholar 

  20. Hingerty, B.E. and Broyde, S.: Energy minimized Structures of Carcinogen-DNA Adducts: 2-acetylaminofluorene and 2-aminofluorene, J. Biomol. Struct. Dyn. 4(1986), 365–372.

    Google Scholar 

  21. Shapiro, R., Hingerty, B.E. and Broyde, S.: Minor-groove Binding Models for Acetylamino-fluorene modified DNA, J. Biomol. Struct. Dyn. 7(1989), 493–513.

    Google Scholar 

  22. Fritsch, V. and Westhof, E.: Minimization and Molecular Dynamics Studies of Guanosine and Z-DNA modified by N-2-acetylaminofluorene, J. Comp. Chem. 12(1991), 147–166.

    Google Scholar 

  23. Besson, M. and Mihalek, C.L.: Total Energy of Deoxyguanosine bonded to N-2-acetylaminofluorene by the Semi-Empirical Modified-Neglect of Differential Diatomic Overlap Method, Mutat. Res. 473(2001), 211–217.

    Google Scholar 

  24. Grad, R., Shapiro, R., Hingerty, B.E. and Broyde, S.: A Molecular Mechanics and Dynamics Study of the Minor Adduct between DNA and the Carcinogen 2-(acetylamino) Fluorene (dGN2-AAF), Chem. Res. Toxicol. 10(1997), 1123–1132.

    Google Scholar 

  25. Mitchell, A.D. and Cross, L.C. (eds.): Tables of Interatomic Distances and Configuration in Molecules and Ions,Special Pub. No. 11, Chemical Society, London, 1958, p. M237.

  26. Neidle, S., Kuroda, R., Broyde, S., Hingerty, B.E., Levine, R.A., Miller, D.W. and Evans, F.E.: Studies on the Conformation and Dynamics of the C8-substituted Guanine Adduct of the Carcinogen Acetylaminofluorene; Model for a Possible Z-DNA modified Structure, Nucleic Acids Res. 12(1984), 8219–8233.

    Google Scholar 

  27. Dewar, M.J.S., Zoebisch, E.G., Healy, E.F. and Stewart, J.P.P.: AM1: A New General Purpose Quantum Mechanical Molecular Model, J. Am. Chem. Soc. 107(1985), 3902–3909.

    Google Scholar 

  28. Stewart, J.J.P.: MOPAC: A Semiempirical Molecular Orbital Program, J. Computer-Aided Molecular Design 4(1990), 1–105.

    Google Scholar 

  29. Dewar, M.J.S. and Thiel, W.: Ground States of Molecules. 38. The MNDO Method. Applications and Parameters, J. Am. Chem. Soc. 99(1977), 4899–4907.

    Google Scholar 

  30. Fletcher, R. and Powell, M.J.D.: A Rapidly Convergent Descent Method for Minimization, Comp. J. 6(1963), 163–168.

    Google Scholar 

  31. Davidon, W.C.: Variance Algorithm for Minimization, Comp. J. 10(1968), 406–410.

    Google Scholar 

  32. Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T.: Numerical Recipes, Cambridge University Press, Cambridge, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Besson, M., Batchelor, E. AM1 Study of N-2-Acetylaminofluorene bonded to Deoxyguanosine at the Minor Adduct Site. Journal of Biological Physics 30, 161–169 (2004). https://doi.org/10.1023/B:JOBP.0000035860.68226.22

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOBP.0000035860.68226.22

Navigation