Skip to main content
Log in

Toward Correct Protein Folding Potentials

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Empirical protein folding potentialfunctions should have a global minimum nearthe native conformationof globular proteins that fold stably, andthey should give the correct free energy offolding. We demonstrate that otherwise verysuccessful potentials fail to have even alocal minimumanywhere near the native conformation, anda seemingly well validated method ofestimatingthe thermodynamic stability of the nativestate is extremely sensitive to smallperturbations inatomic coordinates. These are bothindicative of fitting a great deal ofirrelevant detail. Here weshow how to devise a robust potentialfunction that succeeds very well at bothtasks, at least for alimited set of proteins, and this involvesdeveloping a novel representation of thedenatured state.Predicted free energies of unfolding for 25mutants of barnase are in close agreementwith theexperimental values, while for 17 mutantsthere are substantial discrepancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N. and Bourne, P.E.: The Protein Data Bank, Nucl. Acids Res. 28(2000), 235–242.

    Google Scholar 

  2. Chhajer, M. and Crippen, G.M.: A Protein Folding Potential that Places the Native States of a Large Number of Proteins near a Local Minimum, BMC Struct. Biol. 2(2002), 4.

    Google Scholar 

  3. Clementi, C., Vendruscolo, M., Maritan, A. and Domany, E.: Folding Lennard-Jones Proteins by a Contact Potential, Proteins 37(1999), 544–553.

    Google Scholar 

  4. CPLEX Version 6.6. ILOG, Inc. (2000), <http://www.ilog.com>.

  5. Crippen, G.M. and Ohkubo, Y.Z.: Statistical Mechanics of Protein Folding by Exhaustive Enumeration, Proteins 32(1998), 425–437.

    Google Scholar 

  6. Crippen, G.M.: Enumeration of Cubic Lattice Walks by Contact Class, J. Chem. Phys. 112(2000), 11065–11068.

    Google Scholar 

  7. Crippen, G.M.: A Gaussian Statistical Mechanical Model for the Equilibrium Thermodynamics of Barnase Folding, J. Mol. Biol. 306(2001), 565–573.

    Google Scholar 

  8. Crippen, G.M.: Constructing Smooth Potential Functions for Protein Folding, J. Mol. Graph. Mod. 19(2001), 87–93.

    Google Scholar 

  9. Dill, K.A., Phillips, A.T. and Rosen, J.B.: Protein Structure and Energy Landscape Dependence on Sequence using a Continuous Energy Function, J. Comput. Biol. 4(1997), 227–239.

    Google Scholar 

  10. Dombkowski, A.A. and Crippen, G.M.: Disulfide Recognition in an Optimized Threading Potential, Protein Enging. 13(2000), 679–689.

    Google Scholar 

  11. Freund, S.M.V., Wong, K.-B. and Fersht, A.R.: Initiation Sites of Protein Folding by NMR Analysis, Proc. Natl. Acad. Sci. USA 93(1996), 10600–10603.

    Google Scholar 

  12. Godzik. A., Kolnski, A. and Skolnick, J.: Are Proteins Ideal Mixtures of Amino Acids? Analysis of Energy Parameter Sets, Protein Sci. 4(1995), 2107–2117.

    Google Scholar 

  13. Goldstein, R.A., Luthey-Shulten, Z. and Wolynes, P.G.: Protein Tertiary Structure Recognition using Optimized Hamiltonians with Local Interactions, Proc. Natl. Acad. Sci. USA 89(1992), 9029–9033.

    Google Scholar 

  14. Guerois, R., Nielsen, J.E. and Serrano, L.: Predicting Changes in the Stability of Proteins and Protein Complexes: A Study of more than 1000 Mutations, J. Mol. Biol. 320(2002), 369–387. <http://fold-x.embl-heidelberg.de>

    Google Scholar 

  15. Hammerstrom, P. and Carlsson, U.: Is the Unfolded State the Rosetta Stone of the Protein Folding Problem?, Biochem. Biophys. Res. Commun. 276(2000), 393–398.

    Google Scholar 

  16. Hinds, D.A. and Levitt, M.: Exploring Conformational Space with a Simple Lattice Model for Protein Structure,J. Mol. Biol. 243(1994), 668–682.

    Google Scholar 

  17. Huang, E.S., Subbiah, S., Tsai, J. and Levitt, M.: Using a Hydrophobic Contact Potential to Evaluate Native and Near-Native Folds Generated byMolecular Dynamics Simulations, J. Mol. Biol. 257(1996), 716–725.

    Google Scholar 

  18. Kabsch, W.: A Discussion of the Solution of the Best Rotation to relate Two Sets of Vectors, Acta Cryst. A34(1978), 827–828.

    Google Scholar 

  19. Kocher, J.-P.A., Rooman, M.J. and Wodak, S.J.: Factors Influencing the Ability of Knowledge-Based Potentials to Identify Native Sequence-Structure Matches, J. Mol. Biol. 235(1994), 1598–1613.

    Google Scholar 

  20. Lazaridis, T. and Karplus, M.: Effective Energy Functions for Protein Structure Prediction, Curr. Opin. Struct. Biol. 10(2000), 139–145.

    Google Scholar 

  21. Maiorov, V.N. and Crippen, G.M.: Contact Potential that Recognizes the Correct Folding of Globular Proteins, J. Mol. Biol. 227(1992), 876–888.

    Google Scholar 

  22. Maiorov, V.N. and Crippen, G.M.: Size-Independent Comparison of Protein 3-Dimensional Structures, Proteins 22(1995), 273–283.

    Google Scholar 

  23. Micheletti, C., Seno, F., Banavar, J.R. and Maritan, A.: Learning Effective Amino Acid Interactions through Interactive Stochastic Techniques, Proteins 42(2001), 422–431.

    Google Scholar 

  24. Mirny, L.A. and Shakhnovich, E.I.: How to Derive a Protein Folding Potential? A New Approach to an Old Problem, J. Mol. Biol. 264(1996), 1164–1179.

    Google Scholar 

  25. Miyazawa, S. and Jernigan, R.L.: Estimation of Effective Contact Energies from Protein Crystal Structures: Quasi-Chemical Approximation, Macromolecules 18(1985), 534–552.

    Google Scholar 

  26. Miyazawa, S. and Jernigan, R.L.: Residue-Residue Potentials with a Favorable Contact Pair Term and an Unfavorable High Packing Density Term, for Simulation and Threading, J. Mol. Biol. 256(1996), 623–644.

    Google Scholar 

  27. Ohkubo, Y.Z. and Crippen, G.M.: Potential Energy Function for Continuous State Model of Globular Proteins, J. Comput. Biol. 7(2000), 363–379.

    Google Scholar 

  28. Park, B. and Levitt, M.: Energy Functions that Discriminate X-ray and Near Native Folds from Well-Constructed Decoys, J. Mol. Biol. 258(1996), 367–392.

    Google Scholar 

  29. Park, B.H., Huang, E.S. and Levitt, M.: Factors Affecting the Ability of Energy Functions to Discriminate Correct from Incorrect Folds, J. Mol. Biol. 266(1997), 831–846.

    Google Scholar 

  30. Park, K., Vendruscolo, M. and Domany, E.: Towards an Energy Function for the Contact Map Representation of Proteins, Proteins 40(2000), 237–248.

    Google Scholar 

  31. Reith, D., Huber, T., Muller-Plathe, F. and Torda, A.E.: Free Energy Approximations in Simple Lattice Proteins, J. Chem. Phys. 114(2001), 4998–5005.

    Google Scholar 

  32. Samudrala, R. and Moult, J.: An All-Atom Distance Dependent Conditional Probability Discriminatory Function for Protein Structure Prediction, J. Mol. Biol. 275(1998), 895–916.

    Google Scholar 

  33. Serrano, L., Kellis, J.T., Cann, P., Matouschek, A. and Fersht A.R.: The Folding of an Enzyme II. Substructure of Barnase and the Contribution of Different Interactions to Protein Stability, J. Mol. Biol. 224(1992), 783–804.

    Google Scholar 

  34. Shakhnovich, E.I.: Proteins with Selected Sequences Fold into Unique Native Conformation, Phys. Rev. Lett. 72(1994), 3907–3910.

    Google Scholar 

  35. Shanno, D.F. and Phua, K.H.: Remark on Algorithm 500: Minimization of Unconstrained Multi-Variate Function [E4], ACM Trans. Math. Software 6(1980), 618–622.

    Google Scholar 

  36. Sippl, M.J.: Boltzmann's Principle, Knowledge-Based Mean Fields and Protein Folding. An Approach to the Computational Determination of Protein Structures, J. Comput-Aided Mol. Design 7(1993), 473–501.

    Google Scholar 

  37. Skolnick, J., Jaroszewski, L., Kolinski, A. and Godzik A.: Derivation and Testing of Pair Potentials for Protein Folding. When is the Quasichemical Approximation Correct?, Protein Sci. 6(1997), 676–688.

    Google Scholar 

  38. Takei, J., Chu, R.-A. and Bai, Y.: Absence of Stable Intermediates on the Folding Pathway of Barnase, Proc. Natl. Acad. Sci. USA 97(2000), 10796–10801.

    Google Scholar 

  39. Thomas, P.D. and Dill, K.A.: An InteractiveMethod for Extracting Energy-like Quantities from Protein Structure, Proc. Natl. Acad. Sci. USA 93(1993), 11628–11633.

    Google Scholar 

  40. Thomas, P.D. and Dill, K.A.: Statistical Potentials Extracted from Protein Structures: How Accurate are They?, J. Mol. Biol. 257(1996), 457–469.

    Google Scholar 

  41. Tobi, D. and Elber, R.: Distance-Dependent, Pair Potential for Protein Folding: Results from Linear Optimization, Proteins 41(2000), 40–46.

    Google Scholar 

  42. Tobi, D., Shafran, G., Linial, N. and Elber, R.: On the Design and Analysis of Protein Folding Potentials, Proteins 40(2000), 71–85.

    Google Scholar 

  43. Vendruscolo, M. and Domany, E.: Pairwise Contact Potentials are Unsuitable for Protein Folding, J. Chem. Phys. 109(1998), 11101–11108.

    Google Scholar 

  44. Vendruscolo, M., Najmanovich, R. and Domany, E.: Can a Pairwise Contact Potential Stabilize Native Protein Folds against Decoys Obtained by Threading?, Proteins 38(2000), 134–148.

    Google Scholar 

  45. Wang, Y., Zhang, H., Li, W. and Scott, R.A.: Discriminating Compact Nonnative Structures from the Native Structure of Globular Proteins, Proc. Natl. Acad. Sci. USA 92(1995), 709–713.

    Google Scholar 

  46. Zagrovic, B., Snow, C.D., Shirts, M.R. and Pande, V.S.: Simulation of Folding of a Small Alpha-Helical Protein in Atomistic Detail using Worldwide-Distributed Computing, J. Mol. Biol. 323(2002), 927–937.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chhajer, M., Crippen, G. Toward Correct Protein Folding Potentials. Journal of Biological Physics 30, 171–185 (2004). https://doi.org/10.1023/B:JOBP.0000035854.68334.dd

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOBP.0000035854.68334.dd

Navigation