Skip to main content
Log in

Functional Approach to the Catalytic Site of the Sarcoplasmic Reticulum Ca2+-ATPase: Binding and Hydrolysis of ATP in the Absence of Ca2+

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Isolated sarcoplasmic reticulum vesicles in the presence of Mg2+ and absence of Ca2+ retain significant ATP hydrolytic activity that can be attributed to the Ca2+-ATPase protein. At neutral pH and the presence of 5 mM Mg2+, the dependence of the hydrolysis rate on a linear ATP concentration scale can be fitted by a single hyperbolic function. MgATP hydrolysis is inhibited by either free Mg2+ or free ATP. The rate of ATP hydrolysis is not perturbed by vanadate, whereas the rate of p-nitrophenyl phosphate hydrolysis is not altered by a nonhydrolyzable ATP analog. ATP binding affinity at neutral pH and in a Ca2+-free medium is increased by Mg2+ but decreased by vanadate when Mg2+ is present. It is suggested that MgATP hydrolysis in the absence of Ca2+ requires some optimal adjustment of the enzyme cytoplasmic domains. The Ca2+-independent activity is operative at basal levels of cytoplasmic Ca2+ or when the Ca2+ binding transition is impeded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Blinks, J., Wier, W., Hess, P., and Prendergast, F. (1982). Prog. Biophys. Mol. Biol. 40, 1-114.

    Google Scholar 

  • Carvalho-Alves, P. C., and Scofano, H. M. (1987). J. Biol. Chem. 262, 6610-6614.

    Google Scholar 

  • Champeil, P., and Guillain, F. (1986). Biochemistry 25, 7623-7633.

    Google Scholar 

  • DeJesus, F., Girardet, J. L., and Dupont, Y. (1993). FEBS Lett. 332, 229-232.

    Google Scholar 

  • de Meis, L., and Fíalho de Mello, M. C. (1973). J. Biol. Chem. 248, 3691-3701.

    Google Scholar 

  • de Meis, L., and Vianna, A. L. (1979). Ann. Rev. Biochem. 48, 275-292.

    Google Scholar 

  • Dupont, Y., Pougeois, R., Ronjat, M., and Verjovski-Almeida, S. (1985). J. Biol. Chem. 260, 7241-7249.

    Google Scholar 

  • Eletr, S., and Inesi, G. (1972). Biochim. Biophys. Acta 282, 174-179.

    Google Scholar 

  • Fabiato, A. (1988). Methods Enzymol. 157, 387-417.

    Google Scholar 

  • Fernandez, J. L., Rosemblatt, M., and Hidalgo, C. (1980). Biochim. Biophys. Acta 599, 552-568.

    Google Scholar 

  • Fernández-Belda, F., Fortea, M. I., and Soler, F. (2001). J. Biol. Chem. 276, 7998-8004.

    Google Scholar 

  • Fortea, M. I., Soler, F., and Fernández-Belda, F. (2000). J. Biol. Chem. 275, 12521-12529.

    Google Scholar 

  • Fortea, M. I., Soler, F., and Fernández-Belda, F. (2001). J. Biol. Chem. 276, 37266-37272.

    Google Scholar 

  • Hasselbach, W. (1964). Prog. Biophys. Biophys. Chem. 14, 167-222.

    Google Scholar 

  • Hua, S., Fabris, D., and Inesi, G. (1999). Biophys. J. 77, 2217-2225.

    Google Scholar 

  • Inesi, G., Kurzmack, M., Kosk-Kosicka, D., Lewis, D., Scofano, H., and Guimaraes-Motta, H. (1982). Z. Naturforsch. 37c, 685-691.

    Google Scholar 

  • Kirley, T. L. (1988). J. Biol. Chem. 263, 12682-12689.

    Google Scholar 

  • Lanzetta, P. A., Alvarez, L. J., Reinach, P. S., and Candia, O. A. (1979). Anal. Biochem. 100, 95-97.

    Google Scholar 

  • Lee, A. G. (2003). FEBS Lett. 551, 37-41.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). J. Biol. Chem. 193, 265-275.

    Google Scholar 

  • Ma, H., Inesi, G., and Toyoshima, C. (2003). J. Biol. Chem. 278, 28938-28943.

    Google Scholar 

  • Meissner, G., Conner, G. E., and Fleischer, S. (1973). Biochim. Biophys. Acta 298, 246-269.

    Google Scholar 

  • Meltzer, S., and Berman, M. C. (1984). J. Biol. Chem. 259, 4244-4253.

    Google Scholar 

  • Oliveira, C. R., Coan, C., and Verjovski-Almeida, S. (1988). J. Biol. Chem. 263, 1861-1867.

    Google Scholar 

  • Rossi, B., Leone, F. A., Gache, C., and Lazdunski, M. (1979). J. Biol. Chem. 254, 2302-2307.

    Google Scholar 

  • Sagara, Y., and Inesi, G. (1991). J. Biol. Chem. 266, 13503-13506.

    Google Scholar 

  • Schwartzenbach, G., Senn, H., and Anderegg, G. (1957). Helv. Chim. Acta 40, 1886-1900.

    Google Scholar 

  • Sinev, M. A., Sineva, E. V., Ittah, V., and Haas, E. (1996). Biochemistry 35, 6425-6437.

    Google Scholar 

  • Soler, F., Fortea, M. I., Lax, A., and Fernández-Belda, F. (2002). J. Biol. Chem. 277, 38127-38132.

    Google Scholar 

  • Toyoshima, C., Nakasako, M., Nomura, H., and Ogawa, H. (2000). Nature 405, 647-655.

    Google Scholar 

  • Toyoshima, C., and Nomura, H. (2002). Nature 418, 605-611.

    Google Scholar 

  • Watanabe, T., and Inesi, G. (1982). J. Biol. Chem. 257, 11510-11516.

    Google Scholar 

  • Yu, X., and Inesi, G. (1995). J. Biol. Chem. 270, 4361-4367.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lax, A., Soler, F. & Fernández-Belda, F. Functional Approach to the Catalytic Site of the Sarcoplasmic Reticulum Ca2+-ATPase: Binding and Hydrolysis of ATP in the Absence of Ca2+ . J Bioenerg Biomembr 36, 265–273 (2004). https://doi.org/10.1023/B:JOBB.0000031978.15139.49

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOBB.0000031978.15139.49

Navigation