Skip to main content
Log in

Overexpression of the Inhibitor Protein IF1 in AS-30D Hepatoma Produces a Higher Association with Mitochondrial F1F0 ATP Synthase Compared to Normal Rat Liver: Functional and Cross-Linking Studies

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

According to functional studies, the higher IF1 content reported in mitochondria of cancerous cells is supposed to induce a higher association with the F1F0 complex than in normal cells and therefore a better inhibition of its ATPase activity. The first structural evidence supporting this prediction is here presented. Densitometric analyses of Western blotting experiments indicated a 2-fold increase in IF1 content of AS-30D submitochondrial particles compared to normal rat liver controls. The ratio of IF1/F1 α subunit increased similarly as judged by Westernblot analyses. This IF1 overexpression correlated with a slower rate of IF1 release (F1F0-ATPase activation) from the F1F0 complex in AS-30D than in normal rat liver submitochondrial particles. The IF1-IF1, γ-IF1, and α-IF1 cross-linkages previously formed with dithiobis(succinimidylpropionate) in bovine F1F0I and IF1 complexes (Minauro-Sanmiguel, F., Bravo, C., and García, J. J. (2002). J. Bioenerg. Biomembr. 34, 433–443) were reproduced in the F1F0I-ATP synthase of hepatoma AS-30D cells. However, a much lower yield of IF1 cross-linkages was found in normal rat liver particles which made them almost undetectable in SMP as well as in the immunoprecipitated F1F0I complex. Modeling in vivo IF1 overexpression of cancerous cells by in vitro reconstitution of excess recombinant IF1 with rat liver submitochondrial particles devoid of IF1 reproduced the same IF1 cross-linkages observed in AS-30D particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Aggeler, R., Coons, J., Taylor, S. W., Gosh, S. S., García, J. J., Capaldi, R. A., and Marusich, M. (2002). J. Biol. Chem. 277, 33906-33912.

    Google Scholar 

  • Ala-Rämi, A., Ylitalo, K. V., y Hassinen, I. E. (2003). Basic Res Cardiol. 98, 250-258.

    Google Scholar 

  • Capuano, F., Guerrieri, F., and Papa. S. (1997). J. Bioenerg. Biomembr. 29, 379-384.

    Google Scholar 

  • Capuano, F., Varone, D., D'Eri, N., Russo, E., Tommasi, S., Montemurro, S., Prete, F., and Papa, S. (1996). Biochem. Mol. Biol. 38, 1013-1022.

    Google Scholar 

  • Chang, J. P., Gibley, C. W., Jr., and Ichinoe, K. (1967). Cancer Res. 27, 2065

    Google Scholar 

  • Chernyak, B. V., Dedov, V. N., and Gabai, V. L. (1994). FEBS Lett. 337, 56-59.

    Google Scholar 

  • Chernyak, B. V., Dukhovich, V.F., and Khodjaev, E. Y. (1991). Arch. Biochem. Biophys. 286, 604-609.

    Google Scholar 

  • García, J. J., Tuena de Gómez-Puyou, M., and Gómez-Puyou, A. (1995). J. Bioenerg. Biomembr. 27, 127-136.

    Google Scholar 

  • Gómez-Puyou, A., Tuena de Gómez-Puyou, M., and Ernster, L. (1979). Biochim. Biophys. Acta 547, 252-257.

    Google Scholar 

  • Harris, D. A., Von Tscharner, V., and Radda, G. K. (1979). Biochim. Biophys. Acta 548, 72-84.

    Google Scholar 

  • Inouye, S., and Inouye, M. (1985). Nuclei Acids Res. 9, 3101-3110.

    Google Scholar 

  • Klein, G., Satre, M., Zaccai, G., and Vignais, P. V. (1982). Biochim. Biophys. Acta 681, 226-232.

    Google Scholar 

  • Ko, H. Y., Delannoy, M., Hullihen, J., Chiu, W., and Pedersen, P. L. (2003). J. Biol. Chem. 278, 12305-12309.

    Google Scholar 

  • Kuzela, S., Kolarov, J., Krempasky, V., Hatalova, I., Lakota, J., and Ujhazy, V. (1977). Neoplasma 24, 559-562.

    Google Scholar 

  • Lebowitz, M. S., and Pedersen. P. L. (1993). Arch. Biochem. Biophys. 301, 64-70.

    Google Scholar 

  • Lowry, O. H., Rosegrough, N. J., Farr, A. L., and Randall, R. J. (1951). J. Biol. Chem. 193, 265-275.

    Google Scholar 

  • Luciakova, K., and Kuzela, S. (1984). FEBS Lett. 177, 85-88.

    Google Scholar 

  • Minauro-Sanmiguel, F., Bravo, C., and García J. J. (2002). J. Bioenerg. Biomembr. 34, 433-443.

    Google Scholar 

  • Moreadith, R., and Fiskum, G. (1984). Anal. Biochem. 137, 360-367.

    Google Scholar 

  • Moreno-Sánchez, R. (1985). J. Biol. Chem. 260, 4028-4034.

    Google Scholar 

  • Pullman, M. E., and Monroy, G. C. (1963). J. Biol. Chem. 238, 3762-3769.

    Google Scholar 

  • Rouslin, W. (1991). J. Bioenerg. Biomembr. 23, 873-888.

    Google Scholar 

  • Rouslin, W., and Broge, C. (1996). J. Biol. Chem. 271, 23638-23641.

    Google Scholar 

  • Schwerzmann, K., Hullihen, J., and Pedersen. P. L. (1982). J. Biol. Chem. 257, 9555-9560.

    Google Scholar 

  • Schwerzmann, K., and Pedersen, P. (1986). Arch. Biochem. Biophys. 250, 1-18.

    Google Scholar 

  • Smith, D. F., Walborg, E. F., Jr., and Chang, J. P. (1970). Cancer Res. 30, 2306

    Google Scholar 

  • Zheng, C. F., Wang, T. T., and Weiner, H. (1993). Alcohol Clin. Exp. Res. 17, 828-831.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bravo, C., Minauro-Sanmiguel, F., Morales-Ríos, E. et al. Overexpression of the Inhibitor Protein IF1 in AS-30D Hepatoma Produces a Higher Association with Mitochondrial F1F0 ATP Synthase Compared to Normal Rat Liver: Functional and Cross-Linking Studies. J Bioenerg Biomembr 36, 257–264 (2004). https://doi.org/10.1023/B:JOBB.0000031977.99479.ea

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOBB.0000031977.99479.ea

Navigation