Skip to main content
Log in

Fatty Acids Induce Chloride Permeation in Rat Liver Mitochondria by Activation of the Inner Membrane Anion Channel (IMAC)

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The inner membrane of freshly isolated mammalian mitochondria is poorly permeable to Cl. Low, nonlytic concentrations (≤30 μM) of long-chain fatty acids or their branched-chain derivatives increase permeation of Cl as indicated from rapid large-scale swelling of mitochondria suspended in slightly alkaline KCl medium (supplemented with valinomycin). Myristic, palmitic, or 5-doxylstearic acid are powerful inducers of Cl permeation, whereas lauric, phytanic, stearic, or 16-doxylstearic acid stimulate Cl permeation in a lesser extent. Fatty acid-induced Cl permeation across the inner membrane correlates well with the property of nonesterified fatty acids to release endogenous Mg2+ from mitochondria. Myristic acid stimulates anion permeation in a selective manner, similar as was described for A23187, an activator of the inner membrane anion channel (IMAC). Myristic acid-induced Cl permeation is blocked by low concentrations of tributyltin chloride (IC50≈1.5 nmol/mg protein). Moreover, myristic acid activates a transmembrane ion current in patch-clamped mitoplasts (mitochondria with the outer membrane removed) exposed to alkaline KCl medium. This current is best ascribed to the opening of an ion channel with a single-channel conductance of 108 pS. We propose that long-chain fatty acids can activate IMAC by withdrawal of Mg2+ from intrinsic binding sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Antonenko, Y. N., Smith, D., Kinnally, K. W., and Tedeschi, H. (1994). Biochim. Biophys. Acta 1194, 247-254.

    Google Scholar 

  • Beavis, A. D. (1992). J. Bioenerg. Biomembr. 24, 77-90.

    Google Scholar 

  • Beavis, A. D., and Garlid, K. D. (1987). J. Biol. Chem. 262, 15085-15093.

    Google Scholar 

  • Beavis, A. D., and Powers, M. F. (1989). J. Biol. Chem. 264, 17148-17155.

    Google Scholar 

  • Bernardi, P. (1999). Physiol. Rev. 79, 1127-1155.

    Google Scholar 

  • Bernardi, P., Angrilli, A., Ambrosin, V., and Azzone, G. F. (1989). J. Biol. Chem. 264, 18902-18906.

    Google Scholar 

  • Bernardi, P., Penzo, D., and Wojtczak, L. (2002). Vitam. Horm. 65, 97-126.

    Google Scholar 

  • Borecký, J., Ježek, P., and Siemen, D. (1997). J. Biol. Chem. 272, 19282-19289.

    Google Scholar 

  • Brierleý, G. P., Baysal, K., and Jung, D. W. (1994). J. Bioenerg. Biomembr. 26, 26519-26526.

    Google Scholar 

  • Crompton, M., Ellinger, H., and Costi, A. (1988). Biochem. J. 255, 357-360.

    Google Scholar 

  • Garlid, K. D. (1980). J. Biol. Chem. 255, 11273-11279.

    Google Scholar 

  • Gutknecht, J. (1987). Biochim. Biophys. Acta 898, 97-108.

    Google Scholar 

  • Inoue, I., Nagase, H., Kishi, K., and Higuti, T. (1991). Nature 352, 244-247.

    Google Scholar 

  • Loupatatzis, C., Seitz, G., Schönfeld, P., Lang, F., and Siemen, D. (2002). Cell Physiol. Biochem. 12, 269-278.

    Google Scholar 

  • Mitchell, P. (1961). Nature 191, 144-148.

    Google Scholar 

  • Powers, M. F., and Beavis, A. D. (1991). J. Biol. Chem. 266, 17250-17256.

    Google Scholar 

  • Schönfeld, P., and Bohnensack, R. (1997). FEBS Lett. 420, 167-170.

    Google Scholar 

  • Schönfeld, P., Gerke, S., Bohnensack, R., and Wojtczak, L. (2003). Biochim. Biophys. Acta. 1604, 125-133.

    Google Scholar 

  • Schönfeld, P., Schlüter, T., Schüttig, R., and Bohnensack, R. (2001). FEBS Lett. 491, 45-49.

    Google Scholar 

  • Schönfeld, P., Schüttig, R., and Wojtczak, L. (2002). Arch. Biochem. Biophys. 403, 16-24.

    Google Scholar 

  • Schönfeld, P., Wieckowski, M. R., and Wojtczak, L. (2000). FEBS Lett. 471, 108-112.

    Google Scholar 

  • Siemen, D., Loupatatzis, C., Borecky, J., Gulbins, E., and Lang, F. (1999). Biochem. Biophys. Res. Commun. 257, 549-554.

    Google Scholar 

  • Shinohara, Y., Unami, A., Teshima, M., Nishida, H., van Dam, K., and Teradam, H. (1995). Biochim. Biophys. Acta. 1228, 229-234.

    Google Scholar 

  • Wojtczak, L., Wieckowski, M. R., and Schönfeld, P. (1998). Arch. Biochem. Biophys. 357, 76-84.

    Google Scholar 

  • Xu, W., Liu, Y., Wang, S., McDonald, T., Van Eyk, J. E., Sidor, A., and O'Rourke, B. (2002). Science 298 (5595), 1029-1033.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schönfeld, P., Sayeed, I., Bohnensack, R. et al. Fatty Acids Induce Chloride Permeation in Rat Liver Mitochondria by Activation of the Inner Membrane Anion Channel (IMAC). J Bioenerg Biomembr 36, 241–248 (2004). https://doi.org/10.1023/B:JOBB.0000031975.72350.c6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOBB.0000031975.72350.c6

Navigation