Skip to main content
Log in

Upregulation of the Mitochondrial Phosphate Carrier During Freezing in the Wood Frog Rana sylvatica: Potential Roles of Transporters in Freeze Tolerance

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Screening of a cDNA library prepared from liver of the freeze-tolerant wood frog (Rana sylvatica) identified a freeze-responsive clone containing a 1370-nt sequence with an open reading frame of 360 amino acids. Sequence analysis revealed 84–86% identity with the mammalian inorganic phosphate carrier (PiC) that spans the inner mitochondrial membrane. Northern blot analysis showed that pic transcript levels increased over a time course of freezing, reaching 60-fold upregulation after 24-h frozen. Transcript levels were also assessed under freezing-related stresses with results showing a strong increase in pic transcript levels in response to dehydration (elevated 9.0-fold in 40% dehydrated frogs) but not under anoxia. Western blotting revealed elevated PiC protein over a time course of freeze-thaw whereas other mitochondrial carriers (dicarboxylate carrier, oxoglutarate transporter) of the same family were not affected by freezing. This modulation of PiC protein levels may play a role in mitochondrial ionic and/or osmotic balance during freeze-induced cell volume reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.

    Google Scholar 

  • Cai, Q., Greenway, S. C., and Storey, K. B. (1997). Differential regulation of the mitochondrial ADP/ATP translocase gene in wood frogs under freezing stress. Biochim. Biophys. Acta. 1343, 69-78.

    Google Scholar 

  • Cai, Q., and Storey, K. B. (1997a). Freezing-induced genes in wood frog (Rana sylvatica): Fibrinogen upregulation by freezing and dehydration. Am. J. Physiol. 272, 1480-1492.

    Google Scholar 

  • Cai, Q., and Storey, K. B. (1997b). Upregulation of a novel gene by freezing exposure in the freeze-tolerant wood frog (Rana sylvatica). Gene 198, 305-312.

    Google Scholar 

  • Capobianco, L., Brandolin, G., and Palmieri, F. (1991). Transmembrane topography of the mitochondrial phosphate carrier explored by peptide-specific antibodies and enzymatic digestion. Biochemistry 30, 4963-4969.

    Google Scholar 

  • Chomczynki, P. (1993). A reagent for the single-step simultaneous isolation of RNA, DNA, and proteins from cell and tissue samples. Biotechniques 15, 532-537.

    Google Scholar 

  • Churchill, T. A., and Storey, K. B. (1993). Dehydration tolerance in wood frogs: a new perspective on the development of amphibian freeze tolerance. Am. J. Physiol. 265, R1324-R1332.

    Google Scholar 

  • Dolce, V., Fiermonte, G., Messina, A., and Palmieri, F. (1991). Nucleotide sequence of a human heart cDNA encoding the mitochondrial phosphate carrier. DNA Seq. 2, 133-135.

    Google Scholar 

  • Dolce, V., Iacobazzi, V., Palmieri, F., and Walker, J. E. (1994). The sequences of human and bovine genes of the phosphate carrier from mitochondria contain evidence of alternatively spliced forms. J. Biol. Chem. 269, 10451-10460.

    Google Scholar 

  • Ferreira, G. C., Pratt, R. D., and Pedersen, P. L. (1989). Energy-linked anion transport. Cloning, sequencing, and characterization of a full length cDNA encoding the rat liver mitochondrial proton/phosphate symporter. J. Biol. Chem. 264, 15628-15633.

    Google Scholar 

  • Fiermonte, G., Dolce, V., Arrigoni, R., Runswick, M. J., Walker, J. E., and Palmieri, F. (1999). Organization and sequence of the gene for the human mitochondrial dicarboxylate carrier: evolution of the carrier family. Biochem. J. 344, 953-960.

    Google Scholar 

  • Fiermonte, G., Dolce, V., and Palmieri, F. (1998). Expression in Escherichia coli, functional characterization, and tissue distribution of isoforms A and B of the phosphate carrier from bovine mitochondria. J. Biol. Chem. 273, 22782-22787.

    Google Scholar 

  • Fiermonte, G., Walker, J. E., and Palmieri, F. (1993). Abundant bacterial expression and reconstitution of an intrinsic membrane-transport protein from bovine mitochondria. Biochem. J. 294, 293-299.

    Google Scholar 

  • Green, D. R., and Reed, J. C. (1998). Mitochondria and apoptosis. Science 281, 1309-1312.

    Google Scholar 

  • Holden, C. P., and Storey, K. B. (1997). Second messenger and cAMP-dependent protein kinase responses to dehydration and anoxia stresses in frogs. J. Comp. Physiol. B 167, 305-312.

    Google Scholar 

  • Huizing, M., DePinto, V., Ruitenbeek, W., Trijbels, F. J. M., van den Heuvel, L. P., and Wendel, U. (1996). Importance of mitochondrial transmembrane processes in human mitochondriopathies. J. Bioenerg. Biomembr. 28, 109-114.

    Google Scholar 

  • Huizing, M., Ruitenbeek, W., van den Heuvel, L. P., Dolce, V., Iacobazzi, V., Smeitink, J. A. M., Palmieri, F., and Trijbels, J. M. F. (1998). Human mitochondrial transmembrane metabolite carriers: Tissue distribution and its implication for mitochondrial disorders. J. Bioenerg. Biomembr. 30, 277-284.

    Google Scholar 

  • Kaplan, R. S., and Pedersen, P. L. (1985). Isolation and reconstitution of the n-butylmalonate-sensitive dicarboxylate transporter from rat liver mitochondria. J. Biol. Chem. 260, 10293-10298.

    Google Scholar 

  • Klingenberg, M. (1989). Molecular aspects of the adenine nucleotide carrier from mitochondria. Arch. Biochem. Biophys. 270, 1-14.

    Google Scholar 

  • Kramer, R. (1996). Structural and functional aspects of the phosphate carrier from mitochondria. Kidney Int. 49, 947-952.

    Google Scholar 

  • Kuan, J., and Saier, M. H. (1993). The mitochondrial carrier family of transport proteins: Structural, functional, and evolutionary relationships. Crit. Rev. Biochem. Mol. Biol. 28, 209-233.

    Google Scholar 

  • Lee, R. E., Costanzo, J. P., Davidson, E. C., and Layne, R. E. (1992). Dynamics of body water during freezing and thawing in a freeze-tolerant frog (Rana sylvatica). J. Theor. Biol. 17, 263-266.

    Google Scholar 

  • McNally, J. D., Sturgeon, C. M., and Storey, K. B. (2003). Freeze-induced expression of a novel gene, fr47, in the liver of the freeze-tolerant wood frog, Rana sylvatica. Biochim. Biophys. Acta 1625, 183-191.

    Google Scholar 

  • McNally, J. D., Wu, S., Sturgeon, C. M., and Storey, K. B. (2002). Identification and characterization of a novel freezing inducible gene, li16, in the wood frog Rana sylvatica. FASEB J. 16, 902-904.

    Google Scholar 

  • Palmieri, F. (1994). Mitochondrial carrier proteins. FEBS Lett. 346, 48-54.

    Google Scholar 

  • Palmieri, F. (2004). The mitochondrial transporter family (SLC25): Physiological and pathological implications. In: The ABC of solute carriers (Hediger, M. A. ed.) published in Pflügers Archiv-Europ. J. Physiol. 447(5), 689-709. Epub 2003 Nov 04.

    Google Scholar 

  • Palmieri, F., Bissaccia, F., Capobianco, L., Dolce, V., Fiermonte, G., Iacobazzi, V., Indiveri, C., and Palmieri, L. (1996). Mitochondrial metabolite transporters. Biochim. Biophys. Acta 1275, 127-132.

    Google Scholar 

  • Palmieri, F., Bisaccia, F., Capobianco, L., Dolce, V., Fiermonte, G., Iacobazzi, V., and Zara, V. (1993). Transmembrane topology, genes, and biogenesis of the mitochondrial phosphate and oxoglutarate carriers. J. Bioenerg. Biomembr. 25, 493-501.

    Google Scholar 

  • Runswick, M. J., Powell, S. J., Nyren, P., and Walker, J. E. (1987). Sequence of the bovine mitochondrial phosphate carrier protein: Structural relationship to ADP/ATP translocase and the brown fat mitochondria uncoupling protein. EMBO J. 6, 1367-1373.

    Google Scholar 

  • Stappen, R., and Krämer, R. (1994). Kinetic mechanism of phosphate/phosphate and phosphate/OH-antiports catalyzed by reconstituted phosphate carrier from beef heart mitochondria. J. Biol. Chem. 269, 11240-11246.

    Google Scholar 

  • Storey, K. B. (1999). Living in the cold: Freeze-induced gene responses in freeze-tolerant vertebrates. Clin. Exp. Pharm. Physiol. 26, 57-63.

    Google Scholar 

  • Storey, K. B., and Storey, J. M. (1996). Natural freezing survival in animals. Ann. Rev. Ecol Syst. 27, 365-386.

    Google Scholar 

  • Storey, K. B., and Storey, J. M. (2001). Signal transduction and gene expression in the regulation of natural freezing survival. In Cell and Molecular Responses to Stress (Storey, K. B., and Storey, J. M. eds.), Elsevier Press, Amsterdam, pp. 1-19.

    Google Scholar 

  • Tusnády, G. E., and Simon, I. (1998). Principles governing amino acid composition of integral membrane proteins: Application to topology prediction. J. Mol. Biol. 283, 489-506.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Croos, J.N.A., McNally, J.D., Palmieri, F. et al. Upregulation of the Mitochondrial Phosphate Carrier During Freezing in the Wood Frog Rana sylvatica: Potential Roles of Transporters in Freeze Tolerance. J Bioenerg Biomembr 36, 229–239 (2004). https://doi.org/10.1023/B:JOBB.0000031974.35812.c9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOBB.0000031974.35812.c9

Navigation