Skip to main content
Log in

Solution Structure and Backbone Dynamics of the Pleckstrin Homology Domain of the Human Protein Kinase B (PKB/Akt). Interaction with Inositol Phosphates

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The programmed cell death occurs as part of normal mammalian development. The induction of developmental cell death is a highly regulated process and can be suppressed by a variety of extracellular stimuli. Recently, the ability of trophic factors to promote survival have been attributed, at least in part, to the phosphatidylinositide 3′-OH kinase (PI3K)/Protein Kinase B (PKB, also named Akt) cascade. Several targets of the PI3K/PKB signaling pathway have been identified that may underlie the ability of this regulatory cascade to promote cell survival. PKB possesses a N-terminal Pleckstrin Homology (PH) domain that binds specifically and with high affinity to PtIns(3,4,5)P3 and PtIns(3,4)P2, the PI3K second messengers. PKB is then recruited to the plasma membrane by virtue of its interaction with 3′-OH phosphatidylinositides and activated. Recent evidence indicates that PKB is active in various types of human cancer; constitutive PKB signaling activation is believed to promote proliferation and increased cell survival, thereby contributing to cancer progression. Thus, it has been shown that induction of PKB activity is augmented by the TCL1/MTCP1 oncoproteins through a physical association requiring the PKB PH domain. Here we present the three-dimensional solution structure of the PH domain of the human protein PKB (isoform β). PKBβ-PH is an electrostatically polarized molecule that adopts the same fold and topology as other PH-domains, consisting of a β-sandwich of seven strands capped on one top by an α-helix. The opposite face presents three variable loops that appear poorly defined in the NMR structure. Measurements of 15N spin relaxation times and heteronuclear 15N{1H}NOEs showed that this poor definition is due to intrinsic flexibility, involving complex motions on different time scales. Chemical shift mapping studies correctly defined the binding site of Ins(1,3,4,5)P4 (the head group of PtIns(3,4,5)P3), as was previously proposed from a crystallographic study. More interestingly, these studies allowed us to define a putative alternative low-affinity binding site for Ins(1,4,5)P3. The binding of this sugar to PKBβ-PH might also involve non-specific association that could explain the stabilization of the protein in solution in the presence of Ins(1,4,5)P3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abragam A. (1961) Principles of Nuclear Magnetism, Oxford Science Publication, Clarendon Press, Oxford.

    Google Scholar 

  • Alessi, D.R., Andjelkovic, M., Caudwell, B., Cron, P., Morrice, N., Cohen, P. and Hemmings (1996) EMBO J., 15, 6541–6551.

    Google Scholar 

  • Andjelkovic, M., Jones, P.F., Grossniklaus, U., Cron, P., Scier, A.F., Dick, M., Bibe, G. and Hemmings, B.A. (1995) J. Biol. Chem. 270, 4066–4075.

    Google Scholar 

  • Auguin, D., Barthe, P., Augé-Sénégas, M.-T., Hoh, F., Noguchi, M. and Roumestand, C. (2003) J. Biomol. NMR, 27, 287–288.

    Google Scholar 

  • Barthe, P., Chiche, L., Declerck, N., Delsuc, M.A., Lefèvre, J.F., Malliavin, T., Mispelter, J., Stern, M.-H., Lhoste, J.M. and Roumestand, C. (1999) J. Biomol. NMR, 15, 271–288.

    Google Scholar 

  • Bax, A., Ikura, M., Kay, L.E., Torchia, D.A. and Tschudin, R. (1990) J. Magn. Reson., 86, 304–318.

    Google Scholar 

  • Bellacosa, A., Testa, J.R., Staal, S.P. and Tsichlis, P.N. (1991) Science, 254, 274–277.

    Google Scholar 

  • Blackledge, M.J., Brüschweiler, R., Griesinger, C., Schmidt, J.M., Xu, P. and Ernst, R.R. (1993) Biochemistry, 32, 10960–10974.

    Google Scholar 

  • Brünger, A.T. (1993) X-PLOR (Version 3.1): A system for X-Ray Crystallography and NMR, 3.1 edit, Yale University Press, New Haven, CT.

    Google Scholar 

  • Canet, D., Barthe, P., Mutzenhardt, P. and Roumestand, C. (2001) J. Am. Chem. Soc., 123, 4567–4576.

    Google Scholar 

  • Cantrell, D. (2002) Immunology, 14, 19–26.

    Google Scholar 

  • Clore, G.M., Driscoll, P.C., Wingfield, P.T. and Gronenborn, A.M. (1990) Biochemistry, 29, 7387–7401.

    Google Scholar 

  • Coffer, P.J. and Woodgett, J.R. (1991) Eur. J. Biochem., 201, 475–481.

    Google Scholar 

  • Cornilescu, G., Delaglio, F. and Bax, A. (1999) J. Biomol. NMR, 13, 289–302.

    Google Scholar 

  • Datta, S.R., Brunet, A. and Greenberg, M.E. (1999) Genes Develop., 13, 2905–2927.

    Google Scholar 

  • Farrow, N.A., Zhang, O., Szabo, A., Torchia, D.A. and Kay, L.E. (1995) J. Biomol. NMR, 6, 153–162.

    Google Scholar 

  • Ferguson, K.M., Kavran, J.M., Sankaran, V.G., Fournier, E., Isakoff, S.J., Skolnik, E.Y. and Lemmon, M. (2000) Mol. Cell, 6, 373–384.

    Google Scholar 

  • Fesik, S.W. and Zuiderweg, E.R.P. (1988) J. Magn. Reson., 78, 588–593.

    Google Scholar 

  • Frech, M., Andjelkovic, M, Ingley, E., Reddy, K.K., Falck, J.R. and Hemmings, B.A. (1997) J. Biol. Chem., 272, 8474–8481.

    Google Scholar 

  • French, S.W., Shen, R.R., Koh, P.J., Malone, C.S., Mallick, P. and Teitell, M.A. (2002) Biochemistry, 41, 6376–6382.

    Google Scholar 

  • Fu, T.-B., Virgilio, L., Narducci, M.G., Facchiano, A., Russo, G. and Croce C.M. (1994) Cancer Res., 54, 6297.

    Google Scholar 

  • Fushman, D., Cahill, S., Lemmon, M.A., Schlessinger, J. and Cowburn, D. (1995) Proc. Natl. Acad. Sci. USA, 92, 816–820.

    Google Scholar 

  • Gibson, T., Hyvönen, M., Musacchio, A., Saraste, M. and Birney, E. (1994) Trends Biochem. Sci., 19, 349–353.

    Google Scholar 

  • Guex, N. and Peitsch, M.C. (1997) Electrophoresis, 18, 2714–2723.

    Google Scholar 

  • Guignard, L., Padilla, A., Mispelter, J., Yang, Y.-S, Stern., M.-H., Lhoste, J.M. and Roumestand C. (2000) J. Biomol. NMR, 17, 215–230.

    Google Scholar 

  • Haslam, R.J., Koide, H.B. and Hemmings, B.A. (1993) Nature, 363, 309–310.

    Google Scholar 

  • Hoh, F., Yang, Y.S., Guignard, L., Padilla, A., Stern, M.H., Lhoste, J.M. and van Tilbeurgh, H. (1998) Structure, 6, 147–155.

    Google Scholar 

  • Ikura, M., Kay, L.E. and Bax, A. (1990) Biochemistry, 29, 4659–4667.

    Google Scholar 

  • Ishima, R. and Nagayama, K. (1995a) Biochemistry, 34, 3162–3171.

    Google Scholar 

  • Ishima, R. and Nagayama, K. (1995b) J. Magn. Reson., B108, 73–76.

    Google Scholar 

  • James, S.R., Downes, C.P., Gigg, R., Grove, S.J.A., Holmes, A.B. and Alessi, D.R. (1996) Biochem. J., 315, 709–713.

    Google Scholar 

  • Jeener, J., Meier, B.H., Bachman, P. and Ernst, R.R. (1979) J. Chem. Phys., 71, 4546–4553.

    Google Scholar 

  • Jones, P.F., Jakubowicz, T., Pitossi, F.J., Maurer, F. and Hemmings, B.A. (1991a) Proc. Natl. Acad. Sci. USA 88, 4171–4175.

    Google Scholar 

  • Jones, P.F., Jakubowicz, T. and Hemmings, B.A. (1991b) Cell Regul., 2, 1001–1009.

    Google Scholar 

  • Kay, L.E., Nicholson, L.K., Delaglio, F., Bax., A. and Torchia, D.A. (1992) J. Magn. Reson., 97, 359–375.

    Google Scholar 

  • Koradi, R., Billeter, M. and Wüthrich, K. (1996) J. Mol. Graph., 14, 51–55.

    Google Scholar 

  • Künstle, G., Laine, J., Pierron, G., Kagami, S., Nakajima, H., Hoh, F., Roumestand, C., Stern, M.-H. and Noguchi, M. (2002) Mol. Cell. Biol., 22, 1513–1525.

    Google Scholar 

  • Laine, J., Künstle, G., Obata, Y., Sha, M. and Noguchi, M. (2000) Mol. Cell., 6, 395–407.

    Google Scholar 

  • Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W. et al. (2001) Nature, 409, 860–921.

    Google Scholar 

  • Laskowski, R.A., MacArthur, M.W., Moss, D.S. and Thornton, J.M. (1993) J. Appl. Cryst., 26, 283–291.

    Google Scholar 

  • Lefèvre, J.-F., Dayie, K.T., Peng, J.W. and Wagner, G. (1996) Biochemistry, 35, 2674–2686.

    Google Scholar 

  • Lemmon, M.A. and Ferguson, K.M. (1998) 228, 39–74.

  • Lepre, C.A. and Moore, J.M. (1998) J. Biomol. NMR, 12, 493–499.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4546–4559.

    Google Scholar 

  • Madani, A., Choukroun, V., Soulier, J., Cacheux, V., Claisse, J.F., Valensi, F., Daliphard, S., Cazin, B., Levy, V., Leblond, V., Daniel, M.T., Sigaux, F. and Stern, M.H. (1996) Blood, 87, 1923–1927.

    Google Scholar 

  • Madani, A., Soulier, J., Schmid, M., Plichtova, R., Lermé, F., Gateau-Roesch, O., Garnier, J.P., Pla, M., Sigaux, F. and Stern, M.-H. (1995) Oncogene, 10, 2259–2262.

    Google Scholar 

  • Marion, D., Driscoll, P.C., Kay, L.E., Wingfield, P.T., Bax, A., Gronenborn, A.M. and Clore, G.M. (1989) Biochemistry, 28, 6150–6156.

    Google Scholar 

  • Mayer, B.J., Ren, R., Clark, K.L. and Baltimore, D. (1993) Cell, 73, 629–630.

    Google Scholar 

  • Musacchio, A., Gibson, T., Rice, P., Thompson, J. and Saraste, M. (1993) Trends Biochem. Sci., 18, 343–348.

    Google Scholar 

  • Nicholson, K.M. and Anderson, N.G. (2002) Cell. Signal., 14, 381–395.

    Google Scholar 

  • Nilges, M., Clore, G.M. and Gronenborn, A.M. (1988) FEBS Lett., 229, 317–324.

    Google Scholar 

  • Pekarsky, Y., Hallas, C., Isobe, M., Russo, G. and Croce, C.M. (1999) Proc. Natl. Acad. Sci. USA, 96, 2949–2951.

    Google Scholar 

  • Peng, J.W. and Wagner, G. (1992a) Biochemistry, 31, 8571–8586.

    Google Scholar 

  • Peng, J.W. and Wagner, G. (1992b) J. Magn. Reson., 98, 308–332.

    Google Scholar 

  • Pons, J.L., Malliavin, T.E. and Delsuc, M.A. (1996) J. Biomol. NMR, 8, 445–452.

    Google Scholar 

  • Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (1986) Numerical Recipes, Cambridge University Press, Cambridge.

    Google Scholar 

  • Rance, M. (1987) J. Magn. Reson. 74, 557–564.

    Google Scholar 

  • Rebecchi, M.J. and Scarlata, S. (1998) Annu. Rev. Biophys. Biomol. Struct., 27, 503–528.

    Google Scholar 

  • Riddles, P.W., Blakeley, R.L. and Zerner, B. (1983) Meth. Enzymol., 91, 49–60.

    Google Scholar 

  • Sattler, M., Schleucher, J and Griesinger, C. (1999) Prog. NMR Spectrosc., 34, 93–158.

    Google Scholar 

  • Staal, S.P. (1987) Proc. Natl. Acad. Sci. USA, 84, 5034–5037.

    Google Scholar 

  • Stern, M.H., Soulier, J., Rosenzwajg, M., Nakahara, K., Canki-Klain, N., Aurias, A., Sigaux, F. and Kirsch, I.R. (1993) Oncogene, 8, 2475–2483.

    Google Scholar 

  • Szewczak, A.A., Kellogg, G.W. and Moore, P.R. (1993) FEBS Lett., 327, 261–264.

    Google Scholar 

  • Szyperski, T., Luginbühl, P., Otting, G., Güntert, P. and Wüthrich, K. (1993) J. Biomol. NMR, 3, 151–164.

    Google Scholar 

  • Thomas, C.C., Deak, M., Alessi, D.R. and van Aalfen, D.M.F. (2002) Curr. Biol., 12, 1256–1262.

    Google Scholar 

  • Tjandra, N., Feller, S.E., Pastor, R.W. and Bax, A. (1995) J. Am. Chem. Soc., 117, 12562–12566.

    Google Scholar 

  • Tjandra, N., Szabo, A. and Bax, A. (1996) J. Am. Chem. Soc., 118, 6986–6991.

    Google Scholar 

  • Yang, J., Cron, P., Good, V.M., Thompson, V., Hemmings, B.A. and Barford, D. (2002) Nat. Struct. Biol., 9, 940–944.

    Google Scholar 

  • Yang, Y.-S., Guignard, L., Padilla, A., Hoh, F., Strub, M.P., Stern, M.-H., Lhoste J.M. and Roumestand, C. (1998) J. Biomol. NMR, 11, 339–356.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auguin, D., Barthe, P., Augé-Sénégas, MT. et al. Solution Structure and Backbone Dynamics of the Pleckstrin Homology Domain of the Human Protein Kinase B (PKB/Akt). Interaction with Inositol Phosphates. J Biomol NMR 28, 137–155 (2004). https://doi.org/10.1023/B:JNMR.0000013836.62154.c2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JNMR.0000013836.62154.c2

Navigation