Skip to main content
Log in

Triple Resonance MAS NMR with (13C, 15N) Labelled Molecules: Reduced Dimensionality Data Acquisition Via 13C-15N Heteronuclear Two-Spin Coherence Transfer Pathways

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

A reduced dimensionality magic angle spinning solid-state NMR experimental protocol for obtaining chemical shift correlation spectra of dipolar coupled nuclei in uniformly (13C, 15N) labelled biological systems is described and demonstrated. The method involves a mapping of the evolution frequencies of heteronuclear 13C-15N zero- and double-quantum coherences. In comparison to a reduced dimensionality procedure involving the simultaneous incrementation of two single-quantum chemical shift evolution periods, the approach described here could be potentially advantageous for minimising the heat dissipated in the probe by high power 1H decoupling in experiments requiring long t 1 acquisition times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Astrof, N.S. and Griffin, R.G. (2002) J. Magn. Reson., 158, 157–163.

    Google Scholar 

  • Astrof, N.S., Lyon, C.E. and Griffin, R.G. (2001) J. Magn. Reson., 152, 303–307.

    Google Scholar 

  • Baldus, M. (2002) Prog. NMR Spectrosc., 41, 1–47.

    Google Scholar 

  • Bennett, A.E., Griffin, R.G. and Vega, S. (1994) In NMR Basic Principles and Progress, Vol. 33, Blümich, B. and Kosfeld, P. (Eds.), Springer-Verlag, Berlin, pp. 1–77.

    Google Scholar 

  • Brutscher, B., Cordier, F., Simorre, J.P., Caffrey, M.S. and Marion, D. (1995a) J. Biomol. NMR, 5, 202–206.

    Google Scholar 

  • Brutscher, B., Morelle, N., Cordier, F. and Marion, D. (1995b) J. Magn. Reson., B109, 238–242.

    Google Scholar 

  • Brutscher, B., Simorre, J.P., Caffrey, M.S. and Marion, D. (1994) J. Magn. Reson., B105, 77–82.

    Google Scholar 

  • Castellani, F., van Rossum, B., Diehl, A., Schubert, M., Rehbein, K. and Oschkinat, H. (2002) Nature, 420, 98–102.

    Google Scholar 

  • Detken, A., Hardy, E.H., Ernst, M., Kainosho, M., Kawakami, T., Aimoto, S. and Meier, B.H. (2001) J. Biomol. NMR, 20, 203–221.

    Google Scholar 

  • Dusold, S. and Sebald, A. (2000) Annu. Rep. NMR Spectrosc., 41, 185–264.

    Google Scholar 

  • Griffin, R. (1998) Nat. Struct. Biol., 5, 508–512.

    Google Scholar 

  • Heise, B., Leppert, J., Ohlenschläger, O., Görlach, M. and Ramachandran, R. (2002) J. Biomol. NMR, 24, 237–243.

    Google Scholar 

  • Hong, M. (1999) J. Biomol. NMR, 15, 1–14.

    Google Scholar 

  • Hong, M. and Griffin, R.G. (1998) J. Am. Chem. Soc., 120, 7113–7114.

    Google Scholar 

  • Jaroniec, C.P., Filip, C. and Griffin, R.G. (2002a) J. Am. Chem. Soc., 124, 10728–10742.

    Google Scholar 

  • Jaroniec, C.P., MacPhee, C.E., Astrof, N.S., Dobson, C.M. and Griffin, R.G. (2002b) Proc. Natl. Acad. Sci. USA, 99, 16748–16753.

    Google Scholar 

  • Kim, S. and Szyperski, T. (2003) J. Am. Chem. Soc., 125, 1385–1393.

    Google Scholar 

  • Kupce, E. and Freeman, R. (1996) J. Magn. Reson., A118, 299–303.

    Google Scholar 

  • Leppert, J., Heise, B., Görlach, M. and Ramachandran, R. (2002) J. Biomol. NMR, 23, 227–238.

    Google Scholar 

  • Leppert, J., Heise, B., Ohlenschläger, O., Görlach, M. and Ramachandran, R. (2003) J. Biomol. NMR, 26, 13–24.

    Google Scholar 

  • Luca, S. and Baldus, M. (2002) J. Magn. Reson., 159, 243–249.

    Google Scholar 

  • McDermott, A., Polenova, T., Böckmann, A., Zilm, K.W., Paulson, E.K., Martin, R.W., Montelione, G.T. and Paulsen, E.K. (2000) J. Biomol. NMR, 16, 209–219.

    Google Scholar 

  • Michal, C.A. and Jelinski, L.W. (1997) J. Am. Chem. Soc., 119, 9059–9060.

    Google Scholar 

  • Pauli, J., Baldus, M., van Rossum, B., de Groot, H. and Oschkinat, H. (2001) Chembiochem, 2, 272–281.

    Google Scholar 

  • Petkova, A.T., Baldus, M., Belenky, M., Hong, M., Griffin, R.G. and Herzfeld, J. (2003) J. Magn. Reson., 160, 1–12.

    Google Scholar 

  • Petkova, A.T., Ishii, Y., Balbach, J.J., Antzutkin, O.N., Leapman, R.D., Delaglio, F. and Tycko, R. (2002) Proc. Natl. Acad. Sci. USA, 99, 16742–16747.

    Google Scholar 

  • Rienstra, C.M., Hohwy, M., Hong, M. and Griffin, R.G. (2000) J. Am. Chem. Soc., 122, 10979–10990.

    Google Scholar 

  • Rienstra, C.M., Tucker-Kellogg, L., Jaroniec, C.P., Hohwy, M., Reif, B., McMahon, M.T., Tidor, B., Lozano-Perez, T. and Griffin, R.G. (2002) Proc. Natl. Acad. Sci. USA, 99, 10260–10265.

    Google Scholar 

  • Simorre, J., Brutscher, B., Caffrey, M.S. and Marion, D. (1994) J. Biomol. NMR, 4, 325–333.

    Google Scholar 

  • States, D.J., Haberkorn, R.A. and Ruben, D.J. (1982) J. Magn. Reson., 48, 286–292.

    Google Scholar 

  • Sun, B.-Q., Rienstra, C.M., Costa, P.R., Williamson, J.R. and Griffin, R.G. (1997) J. Am. Chem. Soc., 119, 8540–8546.

    Google Scholar 

  • Szyperski, T., Banecki, B., Braun, D. and Glaser, R.W. (1998) J. Biomol. NMR, 11, 387–405.

    Google Scholar 

  • Szyperski, T., Wider, G., Bushweller, J.H. and Wüthrich, K. (1993) J. Biomol. NMR, 3, 127–132.

    Google Scholar 

  • Szyperski, T., Yeh, D.C., Sukumaran, D.K., Moseley, H.N. and Montelione, G.T. (2002) Proc. Natl. Acad. Sci. USA, 99, 8009–8014.

    Google Scholar 

  • Tycko, R., Pines, A. and Guckenheimer, J. (1985) J. Chem. Phys., 83, 2775–2802.

    Google Scholar 

  • Van Rossum, B.J., Castellani, F., Pauli, J., Rehbein, K., Hollander, J., De Groot, H.J. and Oschkinat, H. (2003) J. Biomol. NMR, 25, 217–223.

    Google Scholar 

  • Xia, Y., Arrowsmith, C.H. and Szyperski, T. (2002) J. Biomol. NMR, 24, 41–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leppert, J., Heise, B., Ohlenschläger, O. et al. Triple Resonance MAS NMR with (13C, 15N) Labelled Molecules: Reduced Dimensionality Data Acquisition Via 13C-15N Heteronuclear Two-Spin Coherence Transfer Pathways. J Biomol NMR 28, 185–190 (2004). https://doi.org/10.1023/B:JNMR.0000013834.36262.79

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JNMR.0000013834.36262.79

Navigation