Skip to main content
Log in

Phosphorus-31 Transverse Relaxation Rate Measurements by NMR Spectroscopy: Insight into Conformational Exchange Along the Nucleic Acid Backbone

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Phosphorus (31P) NMR spectroscopy can provide important information about the dynamics of nucleic acids. In this communication, we propose an inversely detected 31P transverse relaxation rate (R 2) measurement experiment. This experiment enables fast measurement of accurate 31P transverse relaxation rates and provides the possibility to detect slow motions mapped by the phosphorus nuclei along the nucleic acid backbone. Dispersion curves show some 31P nuclei experiencing chemical exchange in the millisecond time scale. Under the assumption of a two-state exchange process, the reduced lifetimes of the exchanging sites (τex) obtained are in accordance with base pair lifetime estimates deduced from imino proton exchange measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akke, M. and Palmer, A.G. (1996) J. Am. Chem. Soc., 118, 911–912.

    Google Scholar 

  • Bodenhausen, G. and Ruben, D.J. (1980) Chem. Phys. Lett., 69, 185–189.

    Google Scholar 

  • Brahms, S., Fritsch, V., Brahms, J.G. and Westhof, E. (1992) J. Mol. Biol., 223, 455–476.

    Google Scholar 

  • Carr, H.Y. and Purcell, E.M. (1954) Phys. Rev., 94, 630–638.

    Google Scholar 

  • Cavanagh, J. and Venters, R.A. (2001) Nat. Struct. Biol., 8, 912–914.

    Google Scholar 

  • Delaglio, F., Grzesiek, S., Vuister, G., Zhu, G., Pfeifer, J. and Bax, A. (1995) J. Biomol. NMR., 6, 277–293.

    Google Scholar 

  • Dickerson, R.E. (1983) J. Mol. Biol., 166, 419–441.

    Google Scholar 

  • Dickerson, R.E. and Drew, H.R. (1981) J. Mol. Biol., 149, 761–786.

    Google Scholar 

  • Farrow, N., Zhang, O., Forman-Kay, J.D. and Kay, L.E. (1994) J. Biomol. NMR., 4, 727–734.

    Google Scholar 

  • Forster, M.J. and Lane, A.N. (1990) Eur. Biophys. J., 18, 347–355.

    Google Scholar 

  • Fossé, P., René, B., Le Bret, M., Paoletti, C. and Saucier, J.M. (1991) Nucl. Acids Res., 19, 2861–2868.

    Google Scholar 

  • Gorenstein, D.G. (1992) Meth. Enzymol., 211, 254–286.

    Google Scholar 

  • Gorenstein, D.G. (1994) Chem. Rev., 94, 1315–1338.

    Google Scholar 

  • Gorenstein, D.G. (1996) In Encyclopedia of NMR, Grant D.M. and Harris R.K. (Eds.), Wiley & Sons, New York, pp. 3340–3346.

    Google Scholar 

  • Guéron, M., Kochoyan, M. and Leroy, J.L. (1987) Nature, 328, 89–92.

    Google Scholar 

  • Gullion, T., Baker, D.B. and Conradi, M.S. (1990) J. Magn. Reson., 89, 479–484.

    Google Scholar 

  • Gupta, G., Bansal, M. and Sasisekharan, V. (1980) Proc. Natl. Acad. Sci. USA, 77, 6486–6490.

    Google Scholar 

  • Hartmann, B., Piazzola, D. and Lavery, R. (1993) Nucl. Acids Res., 21, 561–568.

    Google Scholar 

  • Hilbers, C.W. and Wijmenga, S.S. (1996) In Encyclopedia of NMR, Grant D.M. and Harris R.K. (Eds.), Wiley & Sons, New York, pp. 3346–3359.

    Google Scholar 

  • Hogan, M.E. and Jardetzky, O. (1979) Proc. Natl. Acad. Sci. USA, 76, 6341–6345.

    Google Scholar 

  • Ishima, R., Wingfield, P.T., Stahl, S.J., Kaufman, J.D. and Torchia, D.A. (1998) J. Am. Chem. Soc., 120, 10534–10542.

    Google Scholar 

  • Johnson, B.A. and Blevins, R.A. (1994) J. Biomol. NMR., 4, 603–614.

    Google Scholar 

  • Kan, J.H., Cremers, A.F.M. and Hilbers, C.W. (1987) Eur. J. Biochem., 168, 635–639.

    Google Scholar 

  • Kay, L.E. (1998) Nat. Struct. Biol., 5, 513–517.

    Google Scholar 

  • Kay, L.E., Nicholson, L.K., Delaglio, F., Bax, A. and Torchia, D.A. (1992) J. Magn. Reson., 97, 359–375.

    Google Scholar 

  • Keepers, J.W. and James, T.L. (1982) J. Am. Chem. Soc., 104, 929–939.

    Google Scholar 

  • Kochoyan, M., Leroy, J.L. and Guéron, M. (1987) J. Mol. Biol., 196, 599–609.

    Google Scholar 

  • Konrat, R. and Tollinger, M. (1999) J. Magn. Reson., 13, 213–221.

    Google Scholar 

  • Leroy, J.L., Kochoyan, M., Huynh-Dinh, T. and Guéron, M. (1988) J. Mol. Biol., 200, 223–238.

    Google Scholar 

  • Liu, M., Mao, X., He, C., Huang, H., Nicholson, J.K. and Lindon, J.C. (1998) J. Magn. Reson., 132, 125–129.

    Google Scholar 

  • Loria, J.P., Rance, M. and Palmer, A.G. (1999) J. Am. Chem. Soc., 121, 2331–2332.

    Google Scholar 

  • Luy, B. and Marino, J.P. (2001) J. Am. Chem. Soc., 123, 11306–11307.

    Google Scholar 

  • Luz, Z. and Meiboom, S. (1963) J. Chem. Phys., 39, 366–370.

    Google Scholar 

  • Meiboom, S. and Gill, D. (1958) Rev. Sci. Instrum., 29, 688–691.

    Google Scholar 

  • Millet, O., Loria, J.P., Kroenke, C.D., Pons, M. and Palmer, A.G. (2000) J. Am. Chem. Soc., 122, 2867–2877.

    Google Scholar 

  • Montelione, G.T. and Wagner, G. (1989) J. Am. Chem. Soc., 111, 3096–3098.

    Google Scholar 

  • Mulder, F.A.A. (1999) J. Biomol. NMR., 13, 275–288.

    Google Scholar 

  • Muller, L. (1979) J. Am. Chem. Soc., 101, 4481–4484.

    Google Scholar 

  • Nonin S., Leroy, J.L. and Guéron, M. (1995) Biochemistry, 34, 10652–10659.

    Google Scholar 

  • Odahara, T. et al. (1994) J. Biochem. (Tokyo), 115, 270–278.

    Google Scholar 

  • Orekhov, V.Y., Pervushin, K.V. and Arseniev, A.S. (1994) Eur. J. Biochem., 219, 887–896.

    Google Scholar 

  • Palmer, A.G. (1997) Curr. Opin. Struct. Biol., 7, 732–737.

    Google Scholar 

  • Palmer, A.G., Kroenke, C.D. and Loria, J.P. (2001) Meth. Enzymol., 339, 204–238.

    Google Scholar 

  • Palmer, A.G., Skelton, N.J., Chazin, W.J., Wright, P.E. and Rance, M. (1992) Mol. Phys., 75, 699–711.

    Google Scholar 

  • Palmer, A.G., Williams, J. and McDermott, A. (1996) J. Phys. Chem., 100, 13293–13310.

    Google Scholar 

  • Privé, G.G., Heinemann, U., Chandrasekharan, S., Kan, L.S., Kopta, M.L. and Dickerson, R.E. (1987) Science, 238, 498–504.

    Google Scholar 

  • Ramstein, J. and Lavery, R. (1988) Proc. Natl. Acad. Sci. USA, 85, 7231–7235.

    Google Scholar 

  • Robinson, B.H. and Drobny, G.P. (1995) Meth. Enzymol., 261, 451–509.

    Google Scholar 

  • Roongta, V.A., Jones, C.R. and Gorenstein, D.G. (1990) Biochemistry, 29, 5245–5258.

    Google Scholar 

  • Searle, M.S. and Lane, A.N. (1992) FEBS Lett., 297, 292–296.

    Google Scholar 

  • Shaka, A.J., Keeler, J., Frenkiel, T. and Freeman, R. (1983) J. Magn. Reson., 52, 335–358.

    Google Scholar 

  • States, D.J., Haberkorn, R.A. and Ruben, D.J. (1982) J. Magn. Reson., 48, 286–292.

    Google Scholar 

  • Schweitzer, B.I., Gardner, K.H. and Tucker-Kellog, G. (1995) J. Biomol. NMR., 6, 180–188.

    Google Scholar 

  • Swaminathan, S., Ravishanker, G. and Beveridge, D.L. (1991) J. Am. Chem. Soc., 113, 5027–5040.

    Google Scholar 

  • Tisné, C., Hantz, E., Hartmann, B. and Delepierre, M. (1998) J. Mol. Biol., 279, 127–142.

    Google Scholar 

  • Wand, A.J. (2001) Nat. Struct. Biol., 8, 926–932.

    Google Scholar 

  • Wider, G., Neri, D. and Wüthrich, K. (1991) J. Biomol. NMR., 1, 93–98.

    Google Scholar 

  • Wijmenga, S.S. and van Buuren, B.N.M. (1998) Prog. NMR Spectrosc., 32, 287–387.

    Google Scholar 

  • Williamson, J.R. and Boxer, S.G. (1989) Biochemistry, 28, 2819–2831.

    Google Scholar 

  • Zinn-Justin, S., Berthault, P., Guenneugues, M. and Desvaux, H. (1997) J. Biomol. NMR., 10, 363–372.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catoire, L.J. Phosphorus-31 Transverse Relaxation Rate Measurements by NMR Spectroscopy: Insight into Conformational Exchange Along the Nucleic Acid Backbone. J Biomol NMR 28, 179–184 (2004). https://doi.org/10.1023/B:JNMR.0000013825.45299.fe

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JNMR.0000013825.45299.fe

Navigation