Skip to main content
Log in

Improvement of hydrogen bond geometry in protein NMR structures by residual dipolar couplings – an assessment of the interrelation of NMR restraints

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

We have examined how the hydrogen bond geometry in three different proteins is affected when structural restraints based on measurements of residual dipolar couplings are included in the structure calculations. The study shows, that including restraints based solely on 1HN-15N residual dipolar couplings has pronounced impact on the backbone rmsd and Ramachandran plot but does not improve the hydrogen bond geometry. In the case of chymotrypsin inhibitor 2 the addition of 13CO-13Cα and 15N-13CO one bond dipolar couplings as restraints in the structure calculations improved the hydrogen bond geometry to a quality comparable to that obtained in the 1.8 Å resolution X-ray structure of this protein. A systematic restraint study was performed, in which four types of restraints, residual dipolar couplings, hydrogen bonds, TALOS angles and NOEs, were allowed in two states. This study revealed the importance of using several types of residual dipolar couplings to get good hydrogen bond geometry. The study also showed that using a small set of NOEs derived only from the amide protons, together with a full set of residual dipolar couplings resulted in structures of very high quality. When reducing the NOE set, it is mainly the side-chain to side-chain NOEs that are removed. Despite of this the effect on the side-chain packing is very small when a reduced NOE set is used, which implies that the over all fold of a protein structure is mainly determined by correct folding of the backbone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almond, A. and Axelsen, J.B. (2002) J. Am. Chem. Soc., 124, 9986–9987.

    Google Scholar 

  • Andersen, K.V., Ludvigsen, S., Mandrup, S., Knudsen, J. and Poulsen, F.M. (1992) J. Mol. Biol., 226, 1141–1141.

    Google Scholar 

  • Barfield, M. (2002) J. Am. Chem. Soc., 124, 4158–4168.

    Google Scholar 

  • Bewley C.A., Gustafson, K.R., Boyd, M.R., Covell, D.G., Bax, A., Clore, G.M. and Gronenborn, A.M. (1998) Nat. Struct. Biol., 5, 571–578.

    Google Scholar 

  • Bonvin, A.M.J.J., Houben, K., Guenneugues, M., Kaptein, R. and Boelens, R. (2001) J. Biomol. NMR, 21, 221–233.

    Google Scholar 

  • Brünger, A.T. (1992) X-Plor (Version 3.1) A system for X-Ray Crystallography and NMR.

  • Butterworth S., Lamzin, V.S., Wigley, D.B., Derrick, J.P. and Wilson, K.S. (1998) Protein Brookhaven Databank Entry 2IGD.

  • Cai, M., Huang, Y., Zheng, R., Wei, S.Q., Ghirlando, R., Lee, M.S., Craigie, R., Gronenborn, A.M. and Clore, G.M. (1998) Nat. Struct. Biol., 5, 903–909.

    Google Scholar 

  • Case, D.A. (1995) J. Biomol. NMR, 6, 341–346.

    Google Scholar 

  • Clore, G.M., Gronenborn, A.M. and Bax, A. (1998) J. Magn. Reson., 133, 216–221.

    Google Scholar 

  • Clore, G.M., Gronenborn, A.M. and Tjandra, N. (1998) J. Magn. Reson., 131, 159–162.

    Google Scholar 

  • Clore, G.M., Starich, M.R., Bewley, C.A., Cai, M.L. and Kuszewski, J. (1999) J. Am. Chem. Soc., 121, 6513–6514.

    Google Scholar 

  • Cordier, F. and Grzesiek, S. (1999) J. Am. Chem. Soc., 121, 1601–1602.

    Google Scholar 

  • Cordier, F., Wang, C.Y., Grzesiek, S. and Nicholson, L.K. (2000) J. Mol. Biol., 304, 497–505.

    Google Scholar 

  • Cornilescu, G., Delaglio, F. and Bax, A. (1999a) J. Biomol. NMR, 13, 289–302.

    Google Scholar 

  • Cornilescu, G., Ramirez, B.E., Frank, M.K., Clore, G.M., Gronenborn, A.M. and Bax, A. (1999b) J. Am. Chem. Soc., 121, 6275–6279.

    Google Scholar 

  • Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J. and Bax, A. (1995) J. Biomol. NMR, 6, 277–293.

    Google Scholar 

  • Derrick, J.P. and Wigley, D.B. (1994) J. Mol. Biol., 243, 906–918.

    Google Scholar 

  • Gallagher, T., Alexander, P., Bryan, P. and Gilliand, G.L. (1994) Biochemistry, 33, 4721–4729.

    Google Scholar 

  • Haigh, C.W. and Mallion, R.B. (1979) Prog. Nucl. Magn. Reson. Spectrosc., 13, 303–344.

    Google Scholar 

  • Hansen, M.R., Mueller, L. and Pardi, A. (1998) Nat. Struct. Biol., 5, 1065–1074.

    Google Scholar 

  • Huang, X.M., Moy, F. and Powers, R. (2000) Biochemistry, 39, 13365–13375.

    Google Scholar 

  • Hubbard, S.J. and Thornton, J.M. (1993) NACCESS, Department of Biochemistry and Molecular Biology, University College London.

  • Jensen, P.H., Soroka, V., Thomsen, N.K., Ralets, I., Berezin, V., Bock, E. and Poulsen, F.M. (1999) Nat. Struct. Biol., 6, 486–493.

    Google Scholar 

  • Kasper, C., Rasmussen, H., Kastrup, J.S., Ikemizu, S., Jones, E.Y., Berezin, V. Bock, E. and Larsen, I.K. (2000) Nat. Struct. Biol., 7, 389–393.

    Google Scholar 

  • Kragelund, B.B., Andersen, K.V., Madsen, J.C., Knudsen, J. and Poulsen, F.M. (1993) J. Mol. Biol., 230, 1260–1277.

    Google Scholar 

  • Lerche, M.H. (2000) Ph.D. Thesis, Department of Chemistry, Carlsberg Laboratory and Institute of Molecular Biology, University of Copenhagen.

  • Lerche, M.H., Meissner, A., Poulsen, F.M. and Sorensen, O.W. (1999) J. Magn. Reson., 140, 259–263.

    Google Scholar 

  • Losonczi, J.A. and Prestegard, J.H. (1998) J. Biomol. NMR, 12, 447–451.

    Google Scholar 

  • Ludvigsen, S., Shen, H.Y., Kjaer, M., Madsen, J.C. and Poulsen, F.M. (1991) J. Mol. Biol., 222, 621–635.

    Google Scholar 

  • Madsen, J.C., Sorensen, O.W., Sørensen, P. and Poulsen, F.M. (1993) J. Biomol. NMR, 3, 239–244.

    Google Scholar 

  • Mandrup, S., Hojrup, P., Kristiansen, K. and Knudsen, J. (1991) Biochem. J., 276, 817–823.

    Google Scholar 

  • McPhalen, C.A. and James, M.N. (1987) Biochemistry, 26, 261–269.

    Google Scholar 

  • Meissner, A. and Sørensen, O.W. (2000) J. Magn. Reson., 143, 387–390.

    Google Scholar 

  • Melacini, G., Boelens, R. and Kaptein, R. (1999) J. Biomol. NMR, 15, 189–201.

    Google Scholar 

  • Mueller, G.A., Choy, W.Y., Yang, D.W., Forman-Kay, J.D., Venters, R.A. and Kay, L.E. (2000) J. Mol. Biol., 300, 197–212.

    Google Scholar 

  • Osmark, P., Sørensen, P. and Poulsen, F.M. (19–10–1993) Biochemistry, 32, 11007–11014.

    Google Scholar 

  • Permi, P., Rosevear, P.R. and Annila, A. (2000) J. Biomol. NMR, 17, 43–54.

    Google Scholar 

  • Skrynnikov, N.R. and Kay, L.E. (2000) J. Biomol. NMR, 18, 239–252.

    Google Scholar 

  • Thomsen, N.K., Soroka, V., Jensen, P.H., Berezin, V., Kiselyov, V.V., Bock, E. and Poulsen, F.M. (1996) Nat. Struct. Biol., 3, 581–585.

    Google Scholar 

  • Tjandra, N. and Bax, A. (1997) Science, 278, 1697–1697.

    Google Scholar 

  • van Aalten, D.M., Milne, K.G., Zou, J.Y., Kleywegt, G.J., Bergfors, T., Ferguson, M.A., Knudsen, J. and Jones, T.A. (2001) J. Mol. Biol., 309, 181–192.

    Google Scholar 

  • Vriend, G. (1990) J. Mol. Graphics, 8, 52–56.

    Google Scholar 

  • Wagner, G., Pardi, A. and Wüthrich, K. (1983) J. Am. Chem. Soc., 105, 5948–5949.

    Google Scholar 

  • Yang, D.W., Venters, R.A., Mueller, G.A., Choy, W.Y. and Kay, L.E. (1999) J. Biomol. NMR, 14, 333–343.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flemming M. Poulsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, P.R., Axelsen, J.B., Lerche, M.H. et al. Improvement of hydrogen bond geometry in protein NMR structures by residual dipolar couplings – an assessment of the interrelation of NMR restraints. J Biomol NMR 28, 31–41 (2004). https://doi.org/10.1023/B:JNMR.0000012865.35872.cc

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JNMR.0000012865.35872.cc

Navigation