Skip to main content
Log in

Rotational-echo double-resonance NMR-restrained model of the ternary complex of 5-enolpyruvylshikimate-3-phosphate synthase

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The 46-kD enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the condensation of shikimate-3-phosphate (S3P) and phosphoenolpyruvate to form EPSP. The reaction is inhibited by N-(phosphonomethyl)-glycine (Glp), which, in the presence of S3P, binds to EPSP synthase to form a stable ternary complex. We have used solid-state NMR and molecular modeling to characterize the EPSP synthase–S3P–Glp ternary complex. Modeling began with the crystal coordinates of the unliganded protein, published distance restraints, and information from the chemical modification and mutagenesis literature on EPSP synthase. New inter-ligand and ligand-protein distances were obtained. These measurements utilized the native 31P in S3P and Glp, biosynthetically 13C-labeled S3P, specifically 13C and 15N labeled Glp, and a variety of protein-15N labels. Several models were investigated and tested for accuracy using the results of both new and previously published rotational-echo double resonance (REDOR) NMR experiments. The REDOR model is compared with the recently published X-ray crystal structure of the ternary complex, PDB code 1G6S. There is general agreement between the REDOR model and the crystal structure with respect to the global folding of the two domains of EPSP synthase and the relative positioning of S3P and Glp in the binding pocket. However, some of the REDOR data are in disagreement with predictions based on the coordinates of 1G6S, particularly those of the five arginines lining the binding site. We attribute these discrepancies to substantive differences in sample preparation for REDOR and X-ray crystallography. We applied the REDOR restraints to the 1G6S coordinates and created a REDOR-refined xray structure that agrees with the NMR results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) J. Mol. Biol., 215, 403–410.

    Google Scholar 

  • Anderson, K.S. and Johnson, K.A. (1990) Chem. Rev., 90, 1131–1149.

    Google Scholar 

  • Anderson, K.S., Sikorski, J.A. and Johnson, K.A. (1988) Biochemistry, 27, 1604–1610.

    Google Scholar 

  • Berisio, R., Lamzin, V.S., Sica, F., Wilson, K.S., Zagari, A. and Mazzarella, L. (1999) J. Mol. Biol., 292, 845–854.

    Google Scholar 

  • Berman, H.M., Westbrook, J., Feng, Z., Gilliand, G., Bhat, T.N., Weissig, H., Shindyalov, I.N. and Bourne, P.E. (2000) Nucl. Acids Res., 28, 235–242.

    Google Scholar 

  • Beusen, D.D., McDowell, L.M., Slomczynska, U. and Schaefer, J. (1995) J. Med. Chem., 38, 2742–2747.

    Google Scholar 

  • Castellino, S., Leo, G.C., Sammons, R.D. and Sikorski, J.A. (1991) J. Org. Chem., 56, 5176–5181.

    Google Scholar 

  • Chan, J.C.C. and Eckert, H. (2000) J. Magn. Reson., 147, 170–178.

    Google Scholar 

  • Christensen, A.M. and Schaefer, J. (1993) Biochemistry, 32, 2868–2873.

    Google Scholar 

  • Duncan, K., Lewendon, A. and Coggins, J.R. (1984) FEBS Lett., 170, 59–63.

    Google Scholar 

  • Franz, J.E., Mao, M.K. and Sikorski, J.A. (1997) Glyphosate: A Unique Global Herbicide, American Chemical Society, Washington, DC.

    Google Scholar 

  • Gehring, K., Zhang, X., Hall, J., Nikaido, H. and Wemmer, D.E. (1998) Biochem. Cell Biol., 76, 189–197.

    Google Scholar 

  • Goetz, J.M. and Schaefer, J. (1997) J. Magn. Reson., 127, 147–154.

    Google Scholar 

  • Gullion, T. and Schaefer, J. (1989a) J. Magn. Reson., 81, 196–200.

    Google Scholar 

  • Gullion, T. and Schaefer, J. (1989b) Adv. Magn. Reson., 13, 57–83.

    Google Scholar 

  • Gullion, T. and Schaefer, J. (1991) J. Magn. Reson., 92, 439–442.

    Google Scholar 

  • Gullion, T. and Vega, S. (1992) Chem. Phys. Lett., 194, 423–428.

    Google Scholar 

  • Gullion, T., Baker, D.B. and Conradi, M.S. (1990) J. Magn. Reson., 89, 479–484.

    Google Scholar 

  • Hing, A.W., Tjandra, N., Cottam, P.F., Schaefer, J. and Ho, C. (1994) Biochemistry, 33, 8651–8661.

    Google Scholar 

  • Hodsdon, M.E. and Cistola, D.P. (1997) Biochemistry, 36, 2278–2290.

    Google Scholar 

  • Huang, D.B., Ainsworth, C.F., Stevens, F.J. and Schiffer, M. (1996) Proc. Natl. Acad. Sci. U.S.A., 93, 7017–7021.

    Google Scholar 

  • Huynh, Q.K. (1990) J. Biol. Chem., 265, 6700–6704.

    Google Scholar 

  • Huynh, Q.K. (1991) Arch. Biochem. Biophys., 284, 407–412.

    Google Scholar 

  • Huynh, Q.K. (1992) Biochem. Biophys. Res. Commun., 185, 317–322.

    Google Scholar 

  • Huynh, Q.K. (1993) Biochem. J., 290, 525–530.

    Google Scholar 

  • Huynh, Q.K., Kishore, G.M. and Bild, G.S. (1988a) J. Biol. Chem., 263, 735–739.

    Google Scholar 

  • Huynh, Q.K., Bauer, S.C., Bild, G.S., Kishore, G.M. and Borgmeyer, J.R. (1988b) J. Biol. Chem., 263, 11636–11639.

    Google Scholar 

  • Jacob, G.S., Schaefer, J., Garbow, J.R. and Stejskal, E.O. (1987) J. Biol. Chem., 262, 254–259.

    Google Scholar 

  • Kim, D.H., Tucker-Kellogg, G.W., Lees, W.J. and Walsh, C.T. (1996) Biochemistry, 35, 5435–5440.

    Google Scholar 

  • Knowles, P.F. and Sprinson, D.B. (1970) Meth. Enzymol., 17A, 351–352.

    Google Scholar 

  • Krekel, F., Oecking, C., Amrhein, N. and Macheroux, P. (1999) Biochemistry, 38, 8864–8878.

    Google Scholar 

  • Kurinov, I.V. and Harrison, R.W. (1995) Acta Cryst. D Biol. Cryst., D51, 98–109.

    Google Scholar 

  • Larsen, T.M., Benning, M.M., Wesenberg, G.E., Rayment, I. and Reed, G.H. (1997) Arch. Biochem. Biophys., 345, 199–206.

    Google Scholar 

  • Leo, G.C., Castellino, S., Sammons, R.D. and Sikorski, J.A. (1992) Bioorg. Med. Chem. Lett., 2, 151–154.

    Google Scholar 

  • Lukin, J.A, Kontaxis, G., Simplaceanu, V., Yuan, Y., Bax, A. and Ho, C. (2003) Proc. Natl. Acad. Sci. U.S.A., 100, 517–520.

    Google Scholar 

  • Marshall, G.R., Beusen, D.D., Kociolek, K., Redlinski, A.S., Leplawy, M.T., Pan, Y. and Schaefer, J. (1990) J. Am. Chem. Soc., 112, 963–966.

    Google Scholar 

  • McDowell, L.M., Klug, C.A., Beusen, D.D. and Schaefer, J. (1996a) Biochemistry, 35, 5395–5403.

    Google Scholar 

  • McDowell, L.M., Schmidt, A., Cohen, E.R., Studelska, D.R. and Schaefer, J. (1996b) J. Mol. Biol., 256, 160–171.

    Google Scholar 

  • Mehta, A.K., Hirsh, D.J., Oyler, N., Drobny, G.P. and Schaefer, J. (2000) J. Magn. Reson., 145, 156–158.

    Google Scholar 

  • Millican, R.C. (1970) Meth. Enzymol., 17A, 352–354.

    Google Scholar 

  • Mousedale, D.M. and Coggins, J.R. (1995) Planta, 163, 241–249.

    Google Scholar 

  • O'Connor, R.D. and Schaefer, J. (2002) J. Magn. Reson., 154, 46–52.

    Google Scholar 

  • Olins, P.O., Devine, C.S., Rangwala, S.H. and Kavka, K.S. (1988) Gene, 73, 227–235.

    Google Scholar 

  • Padgette, S.R., Re, D.B., Gasser, C.S., Eichholtz, D.A., Frazier, R.B., Hironaka, C.M., Levine, E.B., Shah, D.M., Fraley, R.T. and Kishore, G.M. (1991) J. Biol. Chem., 266, 22364–22369.

    Google Scholar 

  • Padgette, S.R., Smith, C.E., Huynh, Q.K. and Kishore, G.M. (1988) Arch. Biochem. Biophys., 266, 254–262.

    Google Scholar 

  • Pan, Y., Gullion, T. and Schaefer, J. (1990) J. Magn. Reson., 90, 330–340.

    Google Scholar 

  • Quiocho, F.A. (1990) Phil. Trans. Royal Soc. London. Ser. B Biol. Sci., 326, 341–351; Discussion 351–352.

    Google Scholar 

  • Raleigh, D.P., Levitt, M.H. and Griffin, R.G. (1988) Chem. Phys. Lett., 146, 71–76.

    Google Scholar 

  • Renatus, M., Bode, W., Huber, R., Sturzebecher, J. and Stubbs, M.T. (1998) J. Med. Chem., 41, 5445–5456.

    Google Scholar 

  • Rueppel, M.L., Brightwell, B.B., Schaefer, J. and Marvel, J.T. (1977) J. Agric. Food Chem., 25, 517–528.

    Google Scholar 

  • Schönbrunn, E., Eschenburg, S., Shuttleworth, W.A., Schloss, J.V., Amrhein, N., Evans, J.N.S. and Kabsch, W. (2001) Proc. Natl. Acad. Sci. USA, 98, 1376–1380.

    Google Scholar 

  • Selvapandiyan, A., Ahmad, S., Majumder, K., Arora, N. and Bhatnagar, R.K. (1996) Biochem. Mol. Biol. Int., 40, 603–610.

    Google Scholar 

  • Selvapandiyan, A., Majumder, K., Fattah, F.A., Ahmad, S., Arora, N. and Bhatnagar, R.K. (1995) FEBS Lett., 374, 253–256.

    Google Scholar 

  • Shuttleworth, W.A. and Evans, J.N.S. (1994) Biochemistry, 33, 7062–7068.

    Google Scholar 

  • Shuttleworth, W.A. and Evans, J.N.S. (1996) Arch. Biochem. Biophys., 334, 37–42.

    Google Scholar 

  • Shuttleworth, W.A., Pohl, M.E., Helms, G.L., Jakeman, D.L. and Evans, J.N.S. (1999) Biochemistry, 38, 296–302.

    Google Scholar 

  • Stalker, D.M., Hiatt, W.R. and Comai, L. (1985) J. Biol. Chem., 260, 4724–4728.

    Google Scholar 

  • Stallings, W.C., Abdel-Meguid, S.S., Lim, L.W., Shieh, H.-S., Dayringer, H.E., Leimgruber, N.K., Stegeman, R.A., Anderson, K.S., Sikorski, J.A., Padgette, S.R. and Kishore, G.M. (1991) Proc. Nat. Acad. Sci. USA, 88, 5046–5050.

    Google Scholar 

  • Stauffer, M.E., Young, J.K. and Evans, J.N.S. (2001) Biochemistry, 40, 3951–3957.

    Google Scholar 

  • Stauffer, M.E., Young, J.K., Helms, G.L. and Evans, J.N.S. (2001) FEBS Lett., 499, 182–186.

    Google Scholar 

  • Steinrücken, H.C. and Amrhein, N. (1980) Biochem. Biophys. Res. Commun., 94, 1207–1212.

    Google Scholar 

  • Stubbs, M.T., Reyda, S., Dullweber, F., Moller, M., Klebe, G., Dorsch, D., Mederski, W.W.K.R. and Wurziger, H. (2002) ChemBioChem., 3, 246–249.

    Google Scholar 

  • Studelska, D.R., Klug, C.A., Beusen, D.D., McDowell, L.M. and Schaefer, J. (1996) J. Am. Chem. Soc., 118, 5476–5477.

    Google Scholar 

  • Studelska, D.R., McDowell, L.M., Espe, M.P., Klug, C.A. and Schaefer, J. (1997) Biochemistry, 36, 15555–15560.

    Google Scholar 

  • Wang, J., Balazs, Y.S. and Thompson, L.K. (1997) Biochemistry, 36, 1699–1703.

    Google Scholar 

  • Waugh, D.S. (1996) J. Biomol. NMR, 8, 184–192.

    Google Scholar 

  • Weiss, U. and Mingioli, E.S. (1956) J. Am. Chem. Soc., 78, 2894–2898.

    Google Scholar 

  • Weldeghiorghis, T.K. and Schaefer, J. (2003) J. Magn. Reson., in press.

  • Wishart, D.S., Sykes, B.D. and Richards, F.M. (1991) J. Mol. Biol., 222, 311–333.

    Google Scholar 

  • Wu, J., Xiao, C., Yee, A.F., Goetz, J.M. and Schaefer, J. (2000) Macromolecules, 33, 6849–6852.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynda M. McDowell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDowell, L.M., Poliks, B., Studelska, D.R. et al. Rotational-echo double-resonance NMR-restrained model of the ternary complex of 5-enolpyruvylshikimate-3-phosphate synthase. J Biomol NMR 28, 11–29 (2004). https://doi.org/10.1023/B:JNMR.0000012864.70184.48

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JNMR.0000012864.70184.48

Navigation