Skip to main content
Log in

Development of a β-type Ti–12Mo–5Ta alloy for biomedical applications: cytocompatibility and metallurgical aspects

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Ti-based biocompatible alloys are especially used for replacing failed hard tissue. Some of the most actively investigated materials for medical implants are the β-Ti alloys, as they have a low elastic modulus (to inhibit bone resorption). They are alloyed with elements such as Nb, Ta, Zr, Mo, and Fe. We have prepared a new β-Ti alloy that combines Ti with the non-toxic elements Ta and Mo using a vacuum arc-melting furnace and then annealed at 950 °C for one hour. The alloy was finally quenched in water at room temperature. The Ti–12Mo–5Ta alloy was characterised by X-ray diffraction, optical microscopy, SEM and EDS and found to have a body-centred-cubic structure (β-type). It had a lower Young’s modulus (about 74 GPa) than the classical α/β Ti–6Al–4V alloy (120 GPa), while its Vickers hardness remained very high (about 303 HV). This makes it a good compromise for a use as a bone substitute. The cytocompatibility of samples of Ti–12Mo–5Ta and Ti–6Al–4V titanium alloys with various surface roughnesses was assessed in vitro using organotypic cultures of bone tissue and quantitative analyses of cell migration, proliferation and adhesion. Mechanically polished surfaces were prepared to produce unorientated residual polished grooves and cells grew to a particularly high density on the smoother Ti–12Mo–5Ta surface tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. G. Steinemann, in “Evaluation of Biomaterials”, edited by G. D. Winter, J. L. Leray and K. De Groot (Wiley, Chichester, 1980) p. 1.

    Google Scholar 

  2. Y. Okazaki, S. Rao, T. Tateishi and Y. Ito, Mater. Sci. Eng., A243 (1998) 250.

    Article  Google Scholar 

  3. Y. Okazaki, S. Rao and S. Asao, Mater. Trans. JIM 39 (1998) 1053.

    Google Scholar 

  4. Y. Okazaki, S. Rao, S. Asao and T. Tateishi, ibid. 39 (1998) 1070.

    Google Scholar 

  5. M. Niiomi, Mater. Sci. Eng. A 243 (1998) 231.

    Article  Google Scholar 

  6. Y. Song, D. S. Xu, R. Yang, D. Li, W. T. Wu and Z. X. Guo, ibid. 260 (1999) 269.

    Article  Google Scholar 

  7. M. Niiomi, Metal. Mater. Trans. A 33 (2002) 477.

    Google Scholar 

  8. D. Kuroda, M. Niiomi, M. Morinaga and Y. Kato, Mater. Sci. Eng. A 243 (1998) 244.

    Article  Google Scholar 

  9. M. Long and H. J. Rack, Biomaterials 19 (1998) 1621.

    Article  PubMed  Google Scholar 

  10. J. E. Gonzáles and J. C. Mirza-Rosca, J. Elec. Chem. 471 (1999) 109.

    Article  Google Scholar 

  11. C. Sitting, M. Texor, N. D. Spencer, M. Wieland and P. H. Vallotton, J. Mater. Sci.: Mater. Med. 10 (1999) 35.

    Article  Google Scholar 

  12. P. F. Chauvy, C. Madore and D. Landolt, Surf. Coat. Technol. 110 (1998) 48.

    Article  Google Scholar 

  13. C. Sitting, G. Hähner, A. Marti, M. Textor and N. D. Spencer, J. Mater. Sci.: Mater. Med. 10 (1999) 191.

    Article  Google Scholar 

  14. J. Lausmaa, in “Titanium in Medicine”, edited by D. M. Brunette, P. Tengvall, M. Textor and P. Thomsen (Springer, New York, 2001) p. 231.

    Google Scholar 

  15. J. Lincks, B. D. Boyan, C. R. Blanchard, C. H. Lohmann, Y. Liu, D. L. Cochran, D. D. Dean and Z. Schwartz, Biomaterials 19 (1999) 2219.

    Article  Google Scholar 

  16. P. Cacciafesta, K. R. Hallam, A. C. Watkinson, G. C. Allen, M. J. Miles and K. D. Jandt, Surf. Sci. 491 (2001) 405.

    Article  Google Scholar 

  17. M. F. Sigot-Luizard, M. Lanfranchi, J. L. Duval, S. Benslimane, M. Sigot, R. G. Guidoin and M. W. King, In Vitro 22 (1986) 234.

    Google Scholar 

  18. M. F. Sigot, Sci. Tech. Technol. 20 (1992) 14.

    Google Scholar 

  19. L. Lutterotti, P. Scardi and P. Maistrelli, J. Appl. Cryst. 25 (1992) 459.

    Article  Google Scholar 

  20. J. R. Michael, in “Electron Backscatter Diffraction in Materials Science”, edited by A. J. Schwartz, M. Kumar and B. L. Adams (Kluwer Academic/Plenum Publishers, New York, 2000) p. 75.

    Google Scholar 

  21. W. F. Ho, C. P. Ju and J. H. Lin, Biomaterials 20 (1999) 2115.

    Article  PubMed  Google Scholar 

  22. M. Ikeda, S. Y. Komatsu, I. Sowa and M. Niiomi, Metall. Mater. Trans. A 33 (2002) 487.

    Google Scholar 

  23. Y. Okasaki, Mater. Trans. 43 (2002) 3134.

    Google Scholar 

  24. S. Ankem and C. A. Greene, Mater. Sci. Eng. A263 (1999) 127.

    Article  Google Scholar 

  25. P. J. Bania, in “Titanium Alloys in the 1990s”, edited by D. Eylon, R. R. Boyer and D. A. Koss (P.A. Warrendale, The Mineral, Metals and Materials Society, 1993) p. 3.

  26. R. W. Schutz, in “Titanium Alloys in the 1990s” edited by D. Eylon, R. R. Boyer and D. A. Koss (P.A. Warrendale: The Mineral, Metals & Materials Society, 1993) p. 75.

  27. J. A. Davidson, F. S. Gergette, in Proceedings of Implant Manufacturing and Material Technology, Soc. Manufact. Eng. Em87-122, 1986, p. 122.

  28. Y. Song, R. Yang and Z. X. Guo, Mater. Trans. 43 (2002) 3028.

    Google Scholar 

  29. H. J. Wilke, L. Claes and S. G. Steinemann, in “Clinical Implant Materials: Advances in Biomaterials”, Vol. 9, edited by G. Heimke, U. Soltész and A. J. C. Lee (Elsevier Science B.V., Amsterdam, 1990) p. 309.

    Google Scholar 

  30. S. G. Steinemann, J. Eulenberger, P. A. Mäusli and A. Schroeder, in “Biological and Biomechanical Performance of Biomaterials”, edited by P. Christel, A. Meunier and A. J. C. Lee (Elsevier Science B.V., Amsterdam, 1986) p. 409.

    Google Scholar 

  31. D. Busher, R. K. Schenk, S. G. Steinemann, J. P. Fiorellini, C. H. Fox and H. Stich, J. Biomed. Mater. Res. 25 (1991) 889.

    PubMed  Google Scholar 

  32. B. Chehroudi, T. R. L. Gould and D. M. Brunette, ibid. 24 (1990) 1203.

    PubMed  Google Scholar 

  33. D. M. Brunette, Int. J. Oral Maxillofac. Impl. 3 (1988) 231.

    Google Scholar 

  34. B. D. Boyan, T. W. Hummert, D. D. Dean and Z. Schwartz, Biomaterials 17 (1996) 137.

    Article  PubMed  Google Scholar 

  35. Z. Schwartz, J. Y. Martin, D. D. Dean, J. Simpson, D. L. Cochran and B. D. Boyan, J. Biomed. Mater. Res. 30 (1996) 145.

    PubMed  Google Scholar 

  36. K. Anselme, P. Linez, M. Bigerelle, D. Le Maguer, A. Le Maguer, P. Hardouin, H. F. Hildebrand, A. Iost and J. M. Leroy, Biomaterials 21 (2000) 1567.

    Article  PubMed  Google Scholar 

  37. N. A. F. Jaeger and D. M. Brunette, in “Titanium in Medicine”, edited by D. M. Brunette, P. Tengvall, M. Textor and P. Thomsen (Springer, New York, 2001) p. 343.

    Google Scholar 

  38. B. D. Boyan, D. D. Dean, C. H. Lohmann, D. L. Cochran, V. L. Sylvia and Z. Schwartz, in “Titanium in Medicine”, edited by D. M. Brunette, P. Tengvall, M. Textor and P. Thomsen (Springer, New York, 2001) p. 561.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Gloriant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordin, D.M., Gloriant, T., Texier, G. et al. Development of a β-type Ti–12Mo–5Ta alloy for biomedical applications: cytocompatibility and metallurgical aspects. Journal of Materials Science: Materials in Medicine 15, 885–891 (2004). https://doi.org/10.1023/B:JMSM.0000036276.32211.31

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSM.0000036276.32211.31

Keywords

Navigation